搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布

王浩若 张冲 张宏超 沈中华 倪晓武 陆健

引用本文:
Citation:

超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布

王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健

Spatiotemporal distributions of plasma and optical field during the interaction between ultra-short laser pulses and water nanodroplets

Wang Hao-Ruo, Zhang Chong, Zhang Hong-Chao, Shen Zhong-Hua, Ni Xiao-Wu, Lu Jian
PDF
导出引用
  • 为了研究超短激光脉冲和液滴相互作用过程中电子密度和光场的变化,基于非线性麦克斯韦方程组和电离速率方程,构建了激光等离子体非线性瞬态时域耦合模型,对飞秒激光脉冲击穿微米量级水滴时的电子密度和光场的时空分布进行了计算.结果显示水滴的击穿阈值最小可达2 TW/cm2,为同等条件下无边界水介质击穿阈值的1/4.随着脉冲能量增强,水滴内自由电子密度峰值区域逆着激光入射方向移动,且入射光越强,水滴对光传播的屏蔽越明显.光束在水滴出射端外部汇聚,汇聚点的光功率密度可达入射光的5倍,且时域波形出现压缩和变形.另外,水滴对激光能量的吸收系数随光强增大而增大,并最终趋于饱和.
    The transient changes of free electron density distribution and light field intensity during the interaction between the femtosecond Gaussian laser pulses and millimeter scale water droplets are studied. Based on the nonlinear Maxwell's equations and the ionization rate equation, a transient coupled model is proposed to describe the laser plasma produced in water droplet. The changes of electron density and light field with time are obtained by the finite element method. The calculation results show that the laser induced breakdown threshold in the droplet is about 2 TW/cm2, one quarter of that in a boundaryless water medium under the same condition. We find that the region of plasma generated in the droplet will move along the laser direction at first, however, when the incident laser intensity becomes larger, it will move in the direction opposite to the laser beam propagation and the plasma shielded effect becomes more obvious. The laser beam converged by the droplet focuses outside the droplet, and its power density is five times larger than that of the incident laser. There happen the laser pulse duration compression and waveform distortion at the focus point due to the plasma absorption, and the absorption energy increases with the laser intensity increasing and reaches a saturation finally. We expect the model and calculation results to be able to be used for the study of laser pulse propagation in cloud or rain, the precision control of droplet by laser or eye surgery by laser, and other laser technology applications.
    [1]

    Gelderblom H, Lhuissier H, Klein A L, Bouwhuis W, Lohse D, Villermaux E, Snoeijer J H 2016 J. Fluid Mech. 794 676

    [2]

    Kurilovich D, Klein A L, Torretti F, Lassise A, Hoekstra R, Ubachs W, Gelderblom H, Versolato O O 2016 Phys. Rev. Appl. 6 014018

    [3]

    Peng X Y, Zhang J, Jin Z, Liang T J, Zhong J Y, Wu H C, Liu Y Q, Wang Z H, Chen Z L, Sheng Z M, Li Y T, Wei Z Y 2004 Acta Phys. Sin. 53 2625 (in Chinese) [彭晓昱, 张杰, 金展, 梁天骄, 仲佳勇, 武慧春, 刘运全, 王兆华, 陈正林, 盛政明, 李玉同, 魏志义 2004 物理学报 53 2625]

    [4]

    Banine V Y, Koshelev K N, Swinkels G H P M 2011 J. Phys. D: Appl. Phys. 44 253001

    [5]

    Lindinger A, Hagen J, Socaciu L D, Bernhardt T M, Wste L, Duft D, Leisner T 2004 Appl. Opt. 43 5263

    [6]

    Courvoisier F, Boutou V, Favre C, Hill S C, Wolf J 2003 Opt. Lett. 28 206

    [7]

    Geints Y E, Kabanov A M, Matvienko G G, Oshlakov V K, Zemlyanov A A, Golik S S, Bukin O A 2010 Opt. Lett. 35 2717

    [8]

    Klein A L, Visser C W, Bouwhuis W, Lhuissier H, Sun C, Snoeijer J H, Villermaux E, Lohse D, Gelderblom H 2015 Phys. Fluids 27 91106

    [9]

    Wu B 2008 Appl. Phys. Lett. 93 101104

    [10]

    Geissler M, Tempea G, Scrinzi A, Schnrer M, Krausz F, Brabec T 1999 Phys. Rev. Lett. 83 2930

    [11]

    Kolesik M, Wright E M, Moloney J V 2004 Phys. Rev. Lett. 92 253901

    [12]

    Dubietis A, Gaižauskas E, Tamoauskas G, Di Trapani P 2004 Phys. Rev. Lett. 92 253903

    [13]

    Fan C H, Sun J, Longtin J P 2002 J. Appl. Phys. 91 2530

    [14]

    Saxena I, Ehmann K, Jian C 2014 Appl. Opt. 35 8283

    [15]

    Efimenko E S, Malkov Y A, Murzanev A A, Stepanov A N 2014 J. Opt. Soc. Am. B 31 534

    [16]

    Jarnac A, Tamosauskas G, Majus D, Houard A, Mysyrowicz A, Couairon A, Dubietis A 2014 Phys. Rev. A 89 033809

    [17]

    Hong Z F, Zhang Q B, Rezvani S A, Lan P F, Lu P X 2016 Opt. Express 24 4029

    [18]

    Linz N, Freidank S, Liang X, Vogelmann H, Trickl T, Vogel A 2015 Phys. Rev. B 91 621

    [19]

    Noack J, Vogel A 1999 IEEE J. Quant. Electron. 35 1156

    [20]

    Kennedy P K 1995 IEEE J. Quant. Electron. 31 2241

    [21]

    Kennedy P K, Hammer D X, Rockwell B A 1997 Prog. Quant. Electron. 21 155

    [22]

    Zhang C, Lu J, Zhang H C, Shen Z H, Ni X W 2016 IEEE J. Quant. Electron. 52 1

  • [1]

    Gelderblom H, Lhuissier H, Klein A L, Bouwhuis W, Lohse D, Villermaux E, Snoeijer J H 2016 J. Fluid Mech. 794 676

    [2]

    Kurilovich D, Klein A L, Torretti F, Lassise A, Hoekstra R, Ubachs W, Gelderblom H, Versolato O O 2016 Phys. Rev. Appl. 6 014018

    [3]

    Peng X Y, Zhang J, Jin Z, Liang T J, Zhong J Y, Wu H C, Liu Y Q, Wang Z H, Chen Z L, Sheng Z M, Li Y T, Wei Z Y 2004 Acta Phys. Sin. 53 2625 (in Chinese) [彭晓昱, 张杰, 金展, 梁天骄, 仲佳勇, 武慧春, 刘运全, 王兆华, 陈正林, 盛政明, 李玉同, 魏志义 2004 物理学报 53 2625]

    [4]

    Banine V Y, Koshelev K N, Swinkels G H P M 2011 J. Phys. D: Appl. Phys. 44 253001

    [5]

    Lindinger A, Hagen J, Socaciu L D, Bernhardt T M, Wste L, Duft D, Leisner T 2004 Appl. Opt. 43 5263

    [6]

    Courvoisier F, Boutou V, Favre C, Hill S C, Wolf J 2003 Opt. Lett. 28 206

    [7]

    Geints Y E, Kabanov A M, Matvienko G G, Oshlakov V K, Zemlyanov A A, Golik S S, Bukin O A 2010 Opt. Lett. 35 2717

    [8]

    Klein A L, Visser C W, Bouwhuis W, Lhuissier H, Sun C, Snoeijer J H, Villermaux E, Lohse D, Gelderblom H 2015 Phys. Fluids 27 91106

    [9]

    Wu B 2008 Appl. Phys. Lett. 93 101104

    [10]

    Geissler M, Tempea G, Scrinzi A, Schnrer M, Krausz F, Brabec T 1999 Phys. Rev. Lett. 83 2930

    [11]

    Kolesik M, Wright E M, Moloney J V 2004 Phys. Rev. Lett. 92 253901

    [12]

    Dubietis A, Gaižauskas E, Tamoauskas G, Di Trapani P 2004 Phys. Rev. Lett. 92 253903

    [13]

    Fan C H, Sun J, Longtin J P 2002 J. Appl. Phys. 91 2530

    [14]

    Saxena I, Ehmann K, Jian C 2014 Appl. Opt. 35 8283

    [15]

    Efimenko E S, Malkov Y A, Murzanev A A, Stepanov A N 2014 J. Opt. Soc. Am. B 31 534

    [16]

    Jarnac A, Tamosauskas G, Majus D, Houard A, Mysyrowicz A, Couairon A, Dubietis A 2014 Phys. Rev. A 89 033809

    [17]

    Hong Z F, Zhang Q B, Rezvani S A, Lan P F, Lu P X 2016 Opt. Express 24 4029

    [18]

    Linz N, Freidank S, Liang X, Vogelmann H, Trickl T, Vogel A 2015 Phys. Rev. B 91 621

    [19]

    Noack J, Vogel A 1999 IEEE J. Quant. Electron. 35 1156

    [20]

    Kennedy P K 1995 IEEE J. Quant. Electron. 31 2241

    [21]

    Kennedy P K, Hammer D X, Rockwell B A 1997 Prog. Quant. Electron. 21 155

    [22]

    Zhang C, Lu J, Zhang H C, Shen Z H, Ni X W 2016 IEEE J. Quant. Electron. 52 1

  • [1] 颜劭祺, 高继昆, 陈越, 马尧, 朱晓东. 电子束透射氮化硅薄膜窗产生低密度等离子体. 物理学报, 2024, 73(14): 144102. doi: 10.7498/aps.73.20240302
    [2] 马平, 田径, 田得阳, 张宁, 吴明兴, 唐璞. 应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统. 物理学报, 2024, 73(17): 172401. doi: 10.7498/aps.73.20240656
    [3] 王倩, 范元媛, 赵江山, 刘斌, 亓岩, 颜博霞, 王延伟, 周密, 韩哲, 崔惠绒. 准分子激光器预电离过程影响分析. 物理学报, 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [4] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度. 物理学报, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [5] 冯博文, 王若愚, 马雨彭雪, 钟晓霞. 常压针-板放电等离子体密度演化. 物理学报, 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [6] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [7] 王倩, 赵江山, 罗时文, 左都罗, 周翊. ArF准分子激光系统的能量效率特性. 物理学报, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [8] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [9] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性. 物理学报, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [10] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [11] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [12] 刘晓静, 张伯军, 王婧, 张斯淇, 巴诺, 李宏, 吴向尧, 郭义庆. 一维光子晶体中光场分布特性分析. 物理学报, 2012, 61(23): 237801. doi: 10.7498/aps.61.237801
    [13] 刘可, 易佑民, 李良波. 延迟双脉冲激光产生大气等离子体的实验研究. 物理学报, 2012, 61(22): 225205. doi: 10.7498/aps.61.225205
    [14] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断. 物理学报, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [15] 王巍, 蒋刚. 基于双激发态对稠密等离子体中双电子复合速率系数的研究. 物理学报, 2010, 59(11): 7815-7823. doi: 10.7498/aps.59.7815
    [16] 杨 华, 朱洪亮, 潘教青, 冯 文, 谢红云, 周 帆, 安 欣, 边 静, 赵玲娟, 陈娓兮, 王 圩. 采用单边大光腔结构改善电吸收调制器的光场分布. 物理学报, 2007, 56(5): 2751-2755. doi: 10.7498/aps.56.2751
    [17] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [18] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [19] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较. 物理学报, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [20] 王子洋, 李 勤, 赵 钧, 郭继华. 透射式扫描近场光学显微镜探针光场分布及其受激荧光分子光场分布研究. 物理学报, 2000, 49(10): 1959-1964. doi: 10.7498/aps.49.1959
计量
  • 文章访问数:  6018
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-04-10
  • 刊出日期:  2017-06-05

/

返回文章
返回