搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ArF准分子激光系统的能量效率特性

王倩 赵江山 罗时文 左都罗 周翊

引用本文:
Citation:

ArF准分子激光系统的能量效率特性

王倩, 赵江山, 罗时文, 左都罗, 周翊

Energy efficiency analysis of ArF excimer laser system

Wang Qian, Zhao Jiang-Shan, Luo Shi-Wen, Zuo Du-Luo, Zhou Yi
PDF
导出引用
  • 为深入理解ArF准分子激光系统的运转机制,进而获得优化ArF准分子激光系统设计的理论及方向性指导,利用一维流体模型,以气体高压放电等离子体深紫外激光辐射过程为主要对象,研究了放电抽运ArF准分子激光系统的动力学特性,梳理了ArF准分子激光系统的能量传递过程,深入研究了等离子体放电机理,从能量沉积效率、ArF*粒子形成过程、激光输出三个方面,分析了动力学过程中影响能量效率的主要因素,提出了相应的改进优化措施.仿真结果表明,氟气及相关粒子在系统运转过程中有重要作用,工作气体中氟气的组分比例对能量效率影响较大,偏离最佳点会导致激光系统能量效率的下降.相关结论为ArF准分子激光系统的优化设计和稳定可靠运转提供了重要的理论参考依据.
    The reliable functioning and continual optimizing of ArF excimer laser system is of importance when it comes to productization into the market from a laboratory test machine. The analysis of dynamic characteristics of the system is vital to understanding its operating mechanism and optimizing the design theoretically. In this article, one-dimensional fluid model is used to analyze the excimer laser discharge mechanism, and the content ratio of fluorine gas, argon gas, and neon gas, which constitute a gas mixture, is studied in a simulated ArF excimer laser system. Particles are treated as a fluid, which significantly reduces the computing cost in fluid model, and therefore is suitable for high-pressure situation. Four equations are included in one-dimensional fluid model, i.e., Boltzmann equation that describes electron energy distribution, ion continue equation that illustrates ion number density, Poisson's equation that shows the distribution of electric field, and photon rate equation that demonstrates laser outputting process. By combining these four equations, high pressure plasma discharge process and particles stimulated radiation process are studied, and calculation continues from one time step to another until the end of discharging process. The result of the calculation presents energy transfer process from three aspects:energy deposition efficiency, ArF* formation, and laser outputting. In the energy deposition process, the energy deposition efficiency is sensitive to the change of fluorine gas ratio while the variation of the content ratio of other two gases has a less influence on this process. In addition, there exists an optimal fluorine gas ratio that causes the highest energy deposition efficiency. In the ArF* formation process, the reaction between excited argon ions and fluorine gas is the main channel that generates ArF*. The proper increasing of fluorine gas ratio helps form ArF*. In the laser outputting process, photon loss is mainly because of the reaction between fluorine negative ions and photons. Therefore superfluous fluorine gas in the mixture leads to less photons, which eventually results in low energy efficiency of laser. By summarizing the three aspects of energy transfer process, the fluorine gas ratio in the gas mixture plays a significant role in determining the energy efficiency of ArF excimer laser system. This theory is verified by experiments, showing that the deviation of the optimized fluorine gas ratio severely reduces energy efficiency. This conclusion can guide us in optimizing the design and steady reliable function of ArF excimer laser system.
      通信作者: 周翊, zhouyi@aoe.ac.cn
    • 基金项目: 中国科学院光电研究院创新基金(批准号:Y50B16A12Y)和国家科技重大专项(批准号:2013ZX02202)资助的课题.
      Corresponding author: Zhou Yi, zhouyi@aoe.ac.cn
    • Funds: Project supported by the Innovation Program of Academy of Opto-Electronics, Chinese Academy of Sciences(Grant No. Y50B16A12Y) and the National Science and Technology Infrastructure Program of the Ministry of Science and Technology of China(Grant No. 2013ZX02202).
    [1]

    Vladimir F, Slava R, Robert B, Hong Y, Kevin O, Robert J, Fedor T, Efrain F, Theodore C, Daniel B, William P 1979 IEEE J. Quantum Electron. 15 289

    [2]

    Akashi H, Sakai Y, Tagashira H 1995 J. Phys. D:Appl. Phys. 28 445

    [3]

    Xiong Z, Kushner M J 2011 J. Appl. Phys. 110 083304

    [4]

    Luo S W, Zuo D L, Wang X B 2012 Acta Phys. Sin. 61 045205(in Chinese)[张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕2012物理学报61 045205]

    [5]

    Yang C G 2013 Ph. D. Dissertation (Wuhan:Huazhong University of Science and Technology)(in Chinese)[杨晨光2013博士学位论文(武汉:华中科技大学)]

    [6]

    Shi F 2008 M. S. Dissertation (Dalian:Dalian University of Technology)(in Chinese)[石锋2008硕士学位论文(大连:大连理工大学)]

    [7]

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2009 Theory of Laser (Beijing:National Defense Industry Press) p147(in Chinese)[周炳琨, 高以智, 陈倜嵘, 陈家骅2009激光原理(北京:国防工业出版社)第147页]

    [8]

    Mieko O, Minoru O 1994 J. Phys. D:Appl. Phys. 27 2556

    [9]

    Rauf S, Kushner M J 1999 J. Appl. Phys. 85 3460

    [10]

    Razhev A M, Shchedrin A I, Kalyuzhnaya A G, Zhupikov A A 2005 Quantum Electron. 35 799

    [11]

    Nagai S, Masahiro S, Hideo F, Akihiro K, Toshio G, Yoshiyuki U 1998 IEEE J. Quantum Electron. 34 40

  • [1]

    Vladimir F, Slava R, Robert B, Hong Y, Kevin O, Robert J, Fedor T, Efrain F, Theodore C, Daniel B, William P 1979 IEEE J. Quantum Electron. 15 289

    [2]

    Akashi H, Sakai Y, Tagashira H 1995 J. Phys. D:Appl. Phys. 28 445

    [3]

    Xiong Z, Kushner M J 2011 J. Appl. Phys. 110 083304

    [4]

    Luo S W, Zuo D L, Wang X B 2012 Acta Phys. Sin. 61 045205(in Chinese)[张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕2012物理学报61 045205]

    [5]

    Yang C G 2013 Ph. D. Dissertation (Wuhan:Huazhong University of Science and Technology)(in Chinese)[杨晨光2013博士学位论文(武汉:华中科技大学)]

    [6]

    Shi F 2008 M. S. Dissertation (Dalian:Dalian University of Technology)(in Chinese)[石锋2008硕士学位论文(大连:大连理工大学)]

    [7]

    Zhou B K, Gao Y Z, Chen T R, Chen J H 2009 Theory of Laser (Beijing:National Defense Industry Press) p147(in Chinese)[周炳琨, 高以智, 陈倜嵘, 陈家骅2009激光原理(北京:国防工业出版社)第147页]

    [8]

    Mieko O, Minoru O 1994 J. Phys. D:Appl. Phys. 27 2556

    [9]

    Rauf S, Kushner M J 1999 J. Appl. Phys. 85 3460

    [10]

    Razhev A M, Shchedrin A I, Kalyuzhnaya A G, Zhupikov A A 2005 Quantum Electron. 35 799

    [11]

    Nagai S, Masahiro S, Hideo F, Akihiro K, Toshio G, Yoshiyuki U 1998 IEEE J. Quantum Electron. 34 40

  • [1] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真. 物理学报, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [2] 王倩, 范元媛, 赵江山, 刘斌, 亓岩, 颜博霞, 王延伟, 周密, 韩哲, 崔惠绒. 准分子激光器预电离过程影响分析. 物理学报, 2023, 72(19): 194201. doi: 10.7498/aps.72.20230731
    [3] 刘祥群, 刘宇, 凌艺铭, 雷久侯, 曹金祥, 李瑾, 钟育民, 谌明, 李艳华. 等离子体风洞中释放二氧化碳降低电子密度. 物理学报, 2022, 71(14): 145202. doi: 10.7498/aps.71.20212353
    [4] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [5] 王倩, 赵江山, 范元媛, 郭馨, 周翊. 不同缓冲气体中ArF准分子激光系统放电特性分析. 物理学报, 2020, 69(17): 174207. doi: 10.7498/aps.69.20200087
    [6] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [7] 王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健. 超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布. 物理学报, 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [8] 何寿杰, 张钊, 赵雪娜, 李庆. 微空心阴极维持辉光放电的时空特性. 物理学报, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [9] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [10] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [11] 何寿杰, 哈静, 刘志强, 欧阳吉庭, 何锋. 流体-亚稳态原子传输混合模型模拟空心阴极放电特性. 物理学报, 2013, 62(11): 115203. doi: 10.7498/aps.62.115203
    [12] 王林, 罗振兵, 夏智勋, 刘冰. 等离子体合成射流能量效率及工作特性研究. 物理学报, 2013, 62(12): 125207. doi: 10.7498/aps.62.125207
    [13] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究. 物理学报, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [14] 刘可, 易佑民, 李良波. 延迟双脉冲激光产生大气等离子体的实验研究. 物理学报, 2012, 61(22): 225205. doi: 10.7498/aps.61.225205
    [15] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [16] 董丽芳, 刘为远, 杨玉杰, 王帅, 嵇亚飞. 大气压等离子体炬电子密度的光谱诊断. 物理学报, 2011, 60(4): 045202. doi: 10.7498/aps.60.045202
    [17] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [18] 傅喜泉, 郭 弘. x射线激光在激光等离子体中传输变化及其对诊断的影响. 物理学报, 2003, 52(7): 1682-1687. doi: 10.7498/aps.52.1682
    [19] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [20] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较. 物理学报, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
计量
  • 文章访问数:  7144
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-04
  • 修回日期:  2016-06-23
  • 刊出日期:  2016-11-05

/

返回文章
返回