搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低频/射频联合驱动容性耦合等离子体中二次电子效应的模拟

史寒旭 李欣阳 张钰如 王友年

引用本文:
Citation:

超低频/射频联合驱动容性耦合等离子体中二次电子效应的模拟

史寒旭, 李欣阳, 张钰如, 王友年

ondary electron effect in capacitively coupled plasmas jointly driven by ultra-low frequency/radio frequency sources

SHI Hanxu, LI Xinyang, ZHANG Yuru, WANG Younian
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用二维流体模型, 研究了不同的超低频电压、二次电子发射系数和极板间隙下, 二次电子对双频容性耦合等离子体特性的影响, 其中超低频源频率为400 kHz. 首先, 采用依赖离子能量的二次电子发射系数, 发现电子密度随超低频电压呈现出先降低后增高的趋势. 这是由于一方面, 较高的超低频电压会压缩有效放电体积; 另一方面, 极板发射的二次电子可以获得更多的能量, 进而增强电离过程. 通过与固定的二次电子发射系数的结果相比, 发现在较低的超低频电压下, 采用依赖能量的二次电子发射系数的结果接近于固定值为0.1的情况; 随着超低频电压的增加, 当采用依赖能量的发射系数时, 密度涨幅超过固定值为0.2的结果, 说明超低频电压对二次电子效应的增强效果并不是线性的. 最后, 对比了不同极板间隙下的等离子体特性, 发现随着极板间隙从2 cm增加到4 cm, 电离率的峰值有所下降, 但电子密度显著地增加, 等离子体的径向均匀性有所改善. 此外, 随着超低频电压的升高, 极板间隙对密度的影响越显著. 本文的研究结果有助于深入地理解超低频电源参数对于二次电子效应的影响, 并为等离子体工艺的优化提供一定的指导.
    In recent years, capacitively coupled plasmas driven by ultra-low frequency source have received increasing attention, because they are beneficial to generating ions with high energy and small scattering angle, which aligns well with the current trend in high aspect ratio etching. Since the sheath becomes thicker when an ultra-low frequency source is applied, the secondary electron emission becomes significant. Indeed, these energetic secondary electrons can enhance the ionization process and even affect the discharge mode. In this work, a two-dimensional fluid model is employed to study the influence of secondary electrons on the dual-frequency capacitively coupled plasma under different ultra-low frequency voltages, secondary electron emission coefficients and inter-electrode gaps. The high frequency is fixed at 13.6 MHz, and the ultra-low frequency is fixed at 400 kHz. First, by using the ion energy dependent secondary electron emission coefficient, it is shown that the electron density first decreases and then increases with ultra-low frequency voltage rising. This is because, on the one hand, the higher ultra-low frequency voltage leads to thicker sheath, and therefore, the effective discharge volume is compressed. On the other hand, secondary electrons emitted from electrodes can obtain more energy, thus enhancing the ionization process. By comparing with the results obtained with a fixed secondary electron emission coefficient, it is found that in the low voltage range, the evolution of the electron density is similar to that with a fixed coefficient of 0.1. While, in the high voltage range, the growth of the electron density is even more pronounced than that with a fixed coefficient of 0.2, indicating that the enhancement of the secondary electron effect by ultra-low frequency voltage is non-linear. Finally, the influence of discharge gap on the plasma properties is also discussed. It is shown that with the inter-electrode gap increasing from 2 to 4 cm, the maximum ionization rate becomes lower, but the electron density rises significantly, and the plasma radial uniformity is improved. When inter-electrode gap is large, secondary electrons can completely collide with neutral species, so their influence on the electron density at high ultra-low frequency voltage is more significant. The results obtained in this study contribute to understanding the influence of ultra-low frequency source on the secondary electron effect, and provide some guidance for optimizing plasma processing.
  • 图 1  二维腔室结构示意图

    Fig. 1.  Schematic diagram of two-dimensional chamber structure.

    图 2  采用经验公式计算的二次电子发射系数下, 电子密度的(a)轴向分布和(b)径向分布随超低频电压的变化

    Fig. 2.  Variation of (a) axial distribution and (b) radial distribution of electron density with ultra-low frequency voltage under secondary electron emission coefficient calculated by empirical formula.

    图 3  采用经验公式计算二次电子发射系数下, 腔室中心r = 0 cm处电离率的时空分布, 超低频电压 (a) 100 V; (b) 400 V; (c) 700 V; (d) 1000 V

    Fig. 3.  Using empirical formula to calculate the temporal and spatial distribution of ionization rate at r = 0 cm in the center of the chamber under the secondary electron emission coefficient, ultra-low frequency: (a) 100 V; (b) 400 V; (c) 700 V; (d) 1000 V.

    图 4  采用经验公式计算二次电子发射系数下, 超低频电压1000 V时, 腔室中心r = 0 cm处的(a)轴向电场和(b)电子温度的时空分布

    Fig. 4.  Using empirical formula to calculate the temporal and spatial distribution of (a) axial electric field and (b) electron temperature at the center of the chamber r = 0 cm at ultra-low frequency voltage of 1000 V under the secondary electron emission coefficient.

    图 5  不同的二次电子发射系数下, 体平均电子密度随超低频电压的变化

    Fig. 5.  Variation of volume average electron density with ultra-low frequency voltage under different secondary electron emission coefficients.

    图 6  超低频电压为200 V时, 不同二次电子发射系数下, 电离率的时空分布 (a) $ {\gamma _{\text{i}}} $ = 0; (b) $ {\gamma _{\text{i}}} $ = 0.1; (c) $ {\gamma _{\text{i}}} $ = 0.2; (d)采用经验公式计算$ {\gamma _{\text{i}}} $

    Fig. 6.  Time and space distribution of ionization rate under different secondary electron emission coefficients at ultra-low frequency voltage of 200 V: (a) $ {\gamma _{\text{i}}} $ = 0; (b) $ {\gamma _{\text{i}}} $ = 0.1; (c) $ {\gamma _{\text{i}}} $ = 0.2; (d) calculated by empirical formula.

    图 7  超低频电压为1000 V时, 不同二次电子发射系数下, 电离率的时空分布 (a) $ {\gamma _{\text{i}}} $ = 0; (b) $ {\gamma _{\text{i}}} $ = 0.1; (c) $ {\gamma _{\text{i}}} $ = 0.2; (d)采用经验公式计算$ {\gamma _i} $

    Fig. 7.  Time and space distribution of ionization rate under different secondary electron emission coefficients at ultra-low frequency voltage of 1000 V: (a) $ {\gamma _{\text{i}}} $ = 0; (b) $ {\gamma _{\text{i}}} $ = 0.1; (c) $ {\gamma _{\text{i}}} $ = 0.2; (d) calculated by empirical formula.

    图 8  不同放电间隙下, 体平均电子密度随超低频电压的变化

    Fig. 8.  Variation of volume average electron density with ultra-low frequency voltage under different discharge gaps.

    图 9  不同放电间隙下, 超低频电压为600 V时, 电子密度的分布 (a) 2 cm; (b) 3 cm; (c) 4 cm

    Fig. 9.  Distribution of electron density under different discharge gaps and ultra-low frequency voltage of 600 V: (a) 2 cm; (b) 3 cm; (c) 4 cm.

    图 10  不同放电间隙下, 超低频电压为100 V时, 电离率的时空分布 (a) 2 cm; (b) 3 cm; (c) 4 cm

    Fig. 10.  Temporal and spatial distribution of ionization rate under different discharge gaps and ultra-low frequency voltage of 100 V: (a) 2 cm; (b) 3 cm; (c) 4 cm.

    图 11  不同放电间隙下, 超低频电压为600 V时电离率的时空分布 (a) 2 cm; (b) 3 cm; (c) 4 cm

    Fig. 11.  Temporal and spatial distribution of ionization rate under different discharge gaps and ultra-low frequency voltage of 600 V: (a) 2 cm; (b) 3 cm; (c) 4 cm.

    表 1  Ar等离子体中的电子碰撞反应

    Table 1.  Electron collision reactions in Ar plasma.

    表达式阈值/eV参考文献
    Ar+e→Ar+e0.0[23,24]
    Ar+e→Arm+e11.6[25]
    Ar+e→Arr+e11.7[25]
    Ar+e→Ar++2 e15.8[26]
    Arm+e→Ar++2 e4.2[26]
    Arr+e→Ar++2 e4.1[27]
    下载: 导出CSV
  • [1]

    戴忠玲, 毛明, 王友年 2006 物理 35 693Google Scholar

    Dai Z L, Mao M, Wang Y N 2006 Physics 35 693Google Scholar

    [2]

    Kim S S, Hamaguchi S, Yoon N S, Chang C S, Lee Y D, Ku S H 2001 Phys. Plasmas 8 1384Google Scholar

    [3]

    Tan Y C, Wu S H, Zhu Z X, Xiang Q J, Zhu Z Y, Tian Z 2018 J. Synth. Cryst. 47 1272

    [4]

    Lieberman M A, Lichtenberg A J 2008 Principles of Plasma Discharges & Materials Processing 11 800

    [5]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press

    [6]

    Lee J K, Manuilenko O V, Babaeva N Y, Kim H C, Shon J W 2005 Plasma Sources Sci. Technol. 14 89Google Scholar

    [7]

    Han L, Kenney J, Rauf S, Korolov I, Schulze J 2023 Plasma Sources Sci. Technol. 32 115018Google Scholar

    [8]

    Kim H H, Shin J H, Lee H J 2023 J. Vac. Sci. Technol. , A 41 023004Google Scholar

    [9]

    Zhou Y, Zhao K, Ma F F, Liu Y X, Gao F, Julian Schulze, Wang Y N 2024 Appl. Phys. Lett. 124 064102Google Scholar

    [10]

    Zhou Y, Zhao K, Ma F F, Sun J Y, Liu Y X, Gao F, Zhang Y R, Wang Y N 2025 Plasma Sources Sci. Technol. 34 035016Google Scholar

    [11]

    Wang J C, Tian P, Kenney J, Rauf S, Korolov I, Schulze J 2021 Plasma Sources Sci. Technol. 30 075031Google Scholar

    [12]

    Liu J, Zhang Q Z, Liu Y X, Gao F, Wang Y N 2013 J. Phys. D: Appl. Phys. 46 235202Google Scholar

    [13]

    Hartmann P, Korolov I, Escandon L J, Gennip W V, Buskes K, Schulze J 2022 Plasma Sources Sci. Technol. 31 055017Google Scholar

    [14]

    Hartmann P, Wang L, Nosges K, Berger B, Wilczek S, Brinkmann R P, Mussenbrock T, Juhasz Z, Donko Z, Derzsi A, Lee E, Schulze J 2020 Plasma Sources Sci. Technol. 29 075014Google Scholar

    [15]

    Liu G H, Wang X Y, Liu Y X, Sun J Y, Wang Y N 2018 Plasma Sources Sci. Technol. 27 064004Google Scholar

    [16]

    Schulze J, Donko Z, Luggenholscher D, Czarnetzki U 2009 Plasma Sources Sci. Technol. 18 034011Google Scholar

    [17]

    Takagi S, Chikata T, Sekine M 2021 Jpn. J. Appl. Phys. 60 SAAB07

    [18]

    Donko Z, Schulze J, Hartmann P, Korolov I, Czarnetzki U, Schungel E 2010 Appl. Phys. Lett. 97 081501Google Scholar

    [19]

    Schulze J, Donko Z, Schuengel E, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 045007Google Scholar

    [20]

    Saikia P, Bhuyan H, Yap S L, Escalona M, Favre M, Wyndham E, Schulze J 2019 Phys. Plasmas 26 083505Google Scholar

    [21]

    张钰如, 高飞, 王友年 2021 物理学报 70 095206Google Scholar

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206Google Scholar

    [22]

    Zhang Y R, Xiang X, Zhao S X, Bogaerts A, Wang Y N 2010 Phys. Plasma 17 113512Google Scholar

    [23]

    Kurokawa M, Kitajima M, Toyoshima K, Kishino T 2011 Phys. Rev. A 84 062717Google Scholar

    [24]

    De Heer F J, Jansen R H J, Van Der Kaay W 1979 J. Phys. B: Atom. Mol. Phys. 12 979Google Scholar

    [25]

    Tachibana K 1986 Phys. Rev. A 34 1007Google Scholar

    [26]

    Rejoub R, Lindsay B G, Stebbings R F 2002 Phys. Rev. A 65 042713Google Scholar

    [27]

    Ali M A, Stone P M 2008 Int. J. Mass Spectrom. 271 51Google Scholar

    [28]

    Phelps A V, Pitchford L C, Pedoussat C, Donko Z 1999 Plasma Sources Sci. Technol. 8 B1Google Scholar

    [29]

    Brinkmann R P 2007 J. Appl. Phys. 102 093303Google Scholar

    [30]

    Hartmann P, Wang L, Nosges K, Berger B, Wilczek S, Brinkmann R P, Mussenbrock T, Juhasz Z, Donko Z, Derzsi A, Lee E, Schulze J 2020 Plasma Sources Sci. Technol. 29 075014Google Scholar

    [31]

    Horvath B, Daksha M, Korolov I, Derzsi A, Schulze J 2017 Plasma Sources Sci. Technol. 26 124001Google Scholar

    [32]

    Campanell M D, Khrabrov A V, Kaganovich I D 2012 Phys. Rev. Lett. 108 255001Google Scholar

    [33]

    Campanell M D 2013 Phys. Rev. E 88 033103Google Scholar

  • [1] 魏振宇, 刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素. 物理学报, doi: 10.7498/aps.74.20241550
    [2] 刘在浩, 刘颖华, 许博坪, 尹培琪, 李静, 王屹山, 赵卫, 段忆翔, 汤洁. 大气压氦气预电离直流辉光放电二维仿真研究. 物理学报, doi: 10.7498/aps.73.20230712
    [3] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用. 物理学报, doi: 10.7498/aps.73.20240343
    [4] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真. 物理学报, doi: 10.7498/aps.73.20231056
    [5] 张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟. 体空位缺陷对氧化铝二次电子发射特性的影响分析. 物理学报, doi: 10.7498/aps.73.20240577
    [6] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子在玻璃管中的稳定传输. 物理学报, doi: 10.7498/aps.71.20212036
    [7] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, doi: 10.7498/aps.70.20201828
    [8] 王丽, 温德奇, 田崇彪, 宋远红, 王友年. 容性耦合等离子体中电子加热过程及放电参数控制. 物理学报, doi: 10.7498/aps.70.20210473
    [9] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, doi: 10.7498/aps.67.20172192
    [10] 胡艳婷, 张钰如, 宋远红, 王友年. 相位角对容性耦合电非对称放电特性的影响. 物理学报, doi: 10.7498/aps.67.20181400
    [11] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究. 物理学报, doi: 10.7498/aps.66.246102
    [12] 王观, 胡华, 伍康, 李刚, 王力军. 基于两级摆杆结构的超低频垂直隔振系统. 物理学报, doi: 10.7498/aps.65.200702
    [13] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, doi: 10.7498/aps.63.067901
    [14] 宋庆庆, 王新波, 崔万照, 王志宇, 冉立新. 多载波微放电中二次电子横向扩散的概率分析. 物理学报, doi: 10.7498/aps.63.220205
    [15] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, doi: 10.7498/aps.62.175204
    [16] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究. 物理学报, doi: 10.7498/aps.62.055101
    [17] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟. 物理学报, doi: 10.7498/aps.61.241401
    [18] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响. 物理学报, doi: 10.7498/aps.60.125203
    [19] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, doi: 10.7498/aps.53.3440
    [20] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, doi: 10.7498/aps.52.109
计量
  • 文章访问数:  269
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-15
  • 修回日期:  2025-04-14
  • 上网日期:  2025-05-07

/

返回文章
返回