搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用

方泽 潘泳全 戴栋 张俊勃

引用本文:
Citation:

基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用

方泽, 潘泳全, 戴栋, 张俊勃

Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation

Fang Ze, Pan YongQuan, Dai Dong, Zhang JunBo
PDF
导出引用
  • 近年来,以物理信息神经网络(PINNs)为代表的人工智能计算范式在等离子体数值模拟领域获得了极大关注,但相关研究考虑的等离子体化学体系较为简化,且基于PINNs求解更为复杂的多粒子低温等离子体流体模型的研究还尚处空白。本文提出了一个通用的PINNs框架(源项解耦PINNs,Std-PINNs),用于求解多粒子低温等离子体流体模型。Std-PINNs通过引入等效正离子,并将电流连续性方程替代各粒子输运方程作为物理约束,实现了重粒子输运方程源项与电子密度、平均电子能量的解耦,极大降低了训练复杂度。本文通过两个经典放电案例(低气压氩气辉光放电、大气压氦气辉光放电)展示了Std-PINNs在求解多粒子低温等离子体流体模型的应用,并将结果与传统PINNs和有限元(FEM)模型进行了对比。结果显示,传统PINNs输出了完全错误的训练结果,而Std-PINNs与FEM结果之间的L2相对误差能达到~10-2量级,由此验证了Std-PINNs在模拟多粒子等离子体流体模型的可行性。Std-PINNs为低温等离子体模拟提供了新的思路,并拓展了深度学习方法在复杂物理系统建模中的应用。
    In recent years, the artificial intelligence computing paradigm represented by physics-informed neural networks (PINNs) has received great attention in the field of plasma numerical simulation. However, the plasma chemical system considered in related research is relatively simplified, and there is still a gap in the research on solving the more complex multi-particle low-temperature fluid model based on PINNs. In more complex chemical systems, the coupling relationships between particle densities as well as between particle densities and mean electron energy become more intricate. Therefore, the applicability of PINNs in dealing with sophisticated reaction systems requires further exploration and improvement. In this work, we propose a general PINNs framework (source term decoupled PINNs, Std-PINNs) for solving multi-particle low-temperature plasma fluid model. By introducing equivalent positive ions and replacing each particle transport equation with the current continuity equation as a physical constraint, Std-PINNs splits the entire solution process into the training processes of two neural networks, realizing the decoupling of the source term of the heavy particle transport equation from the electron density and mean electron energy, which greatly reduces the complexity of neural network training. This paper demonstrates the application of Std-PINNs in solving multi-particle low-temperature plasma fluid models through two classic discharge cases with different complexity of reaction systems (low-pressure argon glow discharge and atmospheric-pressure helium glow discharge) and compares the performance of Std-PINNs with that of conventional PINNs and finite element method (FEM). The results show that the training results output from the traditional PINNs are completely incorrect due to the strong coupling correlation of each physical variable through the source terms of each particle transport equation, while the L2 relative error between Std-PINNs and FEM results can be up to ~10-2 orders of magnitude, thus verifying the feasibility of Std-PINNs in simulating multi-particle plasma fluid models. Std-PINNs expands the application of deep learning methods in modeling complex physical systems and provides new ideas for low-temperature plasma simulations. In addition, this study provides novel insights into the field of artificial intelligence scientific computing: the mathematical form that describes the state of a physical system is not unique. By introducing equivalent physical variables, equations suitable for neural network solutions can be derived and combined with observable data to simplify problems.
  • [1]

    Sanito R C, You S J, Wang Y F 2021 J. Environ. Manage. 288 112380

    [2]

    Cheng H, Xu J, Li X, Liu D, Lu X 2020 Phys. Plasmas. 27 063514

    [3]

    Han Z J, Murdock A T, Seo D H, Bendavid A 2018 2D Mater. 5 032002

    [4]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25

    [5]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817

    [6]

    Fang Z, Wang X, Shao T, Zhang C 2017 IEEE Trans. Plasma Sci. 45 310

    [7]

    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002

    [8]

    Purwins H G 2011 IEEE Trans. Plasma Sci. 39 2112

    [9]

    Zhang Y, Ning W, Dai D, Wang Q 2019 Plasma Sci. Technol. 21 074003

    [10]

    Wang Q, Zhou X, Dai D, Huang Z, Zhang D 2021 Plasma Sources Sci. Technol. 30 05LT01

    [11]

    Wang Q, Ning W, Dai D, Zhang Y 2020 Plasma Process. Polym. 17 e1900182

    [12]

    Zhang Y, Ning W, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 104001

    [13]

    Biel W, Albanese R, Ambrosino R, Ariola M, Berkel M V, Bolshakova I, Brunner K J, Cavazzana R, Cecconello M, Conroy S, Dinklage A, Duran I, Dux R, Eade T, Entler S, Ericsson G, Fable E, Farina D, Figini L, Finotti C, Franke Th, Giacomelli L, Giannone L, Gonzalez W, Hjalmarsson A, Hron M, Janky F, Kallenbach A, Kogoj J, König R, Kudlacek O, Luis R, Malaquias A, Marchuk O, Marchiori G, Mattei M, Maviglia F, De Masi G, Mazon D, Meister H, Meyer K, Micheletti D, Nowak S, Piron Ch, Pironti A, Rispoli N, Rohde V, Sergienko G, El Shawish S, Siccinio M, Silva A, da Silva F, Sozzi C, Tardocchi M, Tokar M, Treutterer W, Zohm H 2019 Fus. Eng. Des. 146 465

    [14]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023

    [15]

    Reddy J N 1993 New York 27 14

    [16]

    Eymard R, Gallouët T, Herbin R 2000 Handb. Numer. Anal. 7 713

    [17]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H H, Murphy A B, Schneider W F 2020 J. Phys. D: Appl. Phys. 53 443001

    [18]

    Neyts E C 2016 Plasma Chem. Plasma Process. 36 185

    [19]

    Mei D, Zhu X, Wu C, Ashford B, Williams P T, Tu X 2016 Appl. Catal. B 182 525

    [20]

    Yi Y, Li S, Cui Z, Hao Y, Zhang Y, Wang L, Liu P, Tu X, Xu X, Guo H 2021 Appl. Catal. B 296 120384

    [21]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686

    [22]

    Raissi M, Yazdani A, Karniadakis G E 2020 Science 367 1026

    [23]

    De Florio M, Schiassi E, Ganapol B D, Furfaro R 2021 Phys. Fluids 33 047110

    [24]

    Arzani A, Wang J X, D’Souza R M 2021 Phys. Fluids 33 071905

    [25]

    Kawaguchi S, Takahashi K, Ohkama H, Satoh K 2020 Plasma Sources Sci. Technol. 29 025021

    [26]

    Cai S, Wang Z, Wang S, Perdikaris P, Karniadakis G E 2021 J. Heat Transfer 143 102719

    [27]

    Laubscher R 2021 Phys. Fluids 33 087101

    [28]

    Mathews A, Francisquez M, Hughes J W, Hatch D R, Zhu B, Rogers B N 2021 Phys. Rev. E 104 025205

    [29]

    Zhong L, Gu Q, Wu B 2020 Comput. Phys. Commun. 257 107496

    [30]

    Zhong L, Wu B, Wang Y 2022 Phys. Fluids 34 087116

    [31]

    Wan J, Wang Q, Dai D, Ning W 2019 Phys. Plasmas 26 103510

    [32]

    Wang Q, Ning W, Dai D, Zhang Y, Ouyang J 2019 J. Phys. D: Appl. Phys. 52 205201

    [33]

    Wang Q, Ning W, Dai D, Zhang Y 2020 Plasma Process. Polym. 17 1900182

    [34]

    Glorot X, Bengio Y 2010 Proceedings of the 13th International Conference on Artificial Intelligence and Statistics Sardinia, Italy, May 13—15, 2010 pp249–256

    [35]

    Liu D C, Nocedal J 1989 Math. Program. 45 503

    [36]

    Kingma D P, Ba J L 2014 arXiv:1412.6980 [cs.LG]

    [37]

    Wang S, Yu X, Perdikaris P 2022 J. Comput. Phys. 449 110768

    [38]

    Hagelaar G J M, Kroesen G M W 2000 J. Comput. Phys. 159 1

    [39]

    Blickle V, Speck T, Lutz C, Seifert U, Bechinger C 2007 Phys. Rev. Lett. 98 210601

    [40]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722

    [41]

    Wang Q, Economou D J, Donnelly V M 2006 J. Appl. Phys. 100 023301

    [42]

    Dyatko N A, Ionikh Y Z, Kochetov I V, Marinov D L, Meshchanov A V, Napartovich A P, Petrov F B, Starostin S A 2008 J. Phys. D: Appl. Phys. 41 055204

    [43]

    Deloche R, Monchicourt P, Cheret M, Lambert F 1976 Phys. Rev. A 13 1140

    [44]

    Hagelaar G J M, De Hoog F J, Kroesen G M W 2000 Phys. Rev. E 62 1452

    [45]

    Hassé H R, Cook W R 1931 Philos. Mag. J. Sci. 12 554

    [46]

    Shrestha A K, Shrestha R, Baniya H B, Tyata R B, Subedi D P, Wong C S 2014 relation 2 1

    [47]

    Wang Q, Ning W, Dai D, Zhang Y, Ouyang J 2019 J. Phys. D: Appl. Phys. 52 205201

    [48]

    Wang Q, Dai D, Ning W, Zhang Y 2021 J. Phys. D: Appl. Phys. 54 115203

    [49]

    Mathews A, Francisquez M, Hughes J W, Hatch D R, Zhu B, Rogers B N 2021 Phys. Rev. E 104 025205

    [50]

    Tochikubo F, Shirai N, Uchida S 2011 Appl. Phys. Express 4 056001

    [51]

    Zhang Y, Ning W, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003

    [52]

    Pitchford L C, Alves L L, Bartschat K, Biagi S F, Bordage M, Bray I, Brion C E, Brunger M J, Campbell L, Chachereau A, Chaudhury B, Christophorou L G, Carbone E, Dyatko N A, Franck C M, Fursa D V., Gangwar R K, Guerra V, Haefliger P, Hagelaar G J M, Hoesl A, Itikawa Y, Kochetov I V., McEachran R P, Morgan W L, Napartovich A P, Puech V, Rabie M, Sharma L, Srivastava R, Stauffer A D, Tennyson J, de Urquijo J, van Dijk J, Viehland L A, Zammit M C, Zatsarinny O, Pancheshnyi S 2017 Plasma Process. Polym. 14 1600098

    [53]

    Zhu X M, Pu Y K 2009 J. Phys. D: Appl. Phys. 43 015204

    [54]

    Riccardi C, Barni R 2012 Chem. Kinet. 10 38396

    [55]

    Liu D X, Iza F, Wang X H, Ma Z Z, Rong M Z, Kong M G 2013 Plasma Sources Sci. Technol. 22 055016

    [56]

    Zhu M, Zhong A, Dai D, Wang Q, Shao T, Ostrikov K K 2022 J. Phys. D: Appl. Phys. 55 355201

    [57]

    Pietanza L D, Guaitella O, Aquilanti V, Armenise I, Bogaerts A, Capitelli M, Colonna G, Guerra V, Engeln R, Kustova E 2021 Eur. Phys. J. D 75 237

  • [1] 陈锦峰, 朱林繁. 等离子体刻蚀建模中的电子碰撞截面数据. 物理学报, doi: 10.7498/aps.73.20231598
    [2] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真. 物理学报, doi: 10.7498/aps.73.20231056
    [3] 王倩, 范元媛, 赵江山, 刘斌, 亓岩, 颜博霞, 王延伟, 周密, 韩哲, 崔惠绒. 准分子激光器预电离过程影响分析. 物理学报, doi: 10.7498/aps.72.20230731
    [4] 田十方, 李彪. 基于梯度优化物理信息神经网络求解复杂非线性问题. 物理学报, doi: 10.7498/aps.72.20222381
    [5] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, doi: 10.7498/aps.70.20201828
    [6] 张权治, 张雷宇, 马方方, 王友年. 多孔材料的低温刻蚀技术. 物理学报, doi: 10.7498/aps.70.20202245
    [7] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, doi: 10.7498/aps.68.20190734
    [8] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, doi: 10.7498/aps.67.20172192
    [9] 孙安邦, 李晗蔚, 许鹏, 张冠军. 流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型. 物理学报, doi: 10.7498/aps.66.195101
    [10] 王学扬, 齐志华, 宋颖, 刘东平. 等离子体放电活化生理盐水杀菌应用研究. 物理学报, doi: 10.7498/aps.65.123301
    [11] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, doi: 10.7498/aps.63.067901
    [12] 何曼丽, 王晓, 张明, 王黎, 宋蕊. 低温等离子体中H2(D2和T2)的振动分布. 物理学报, doi: 10.7498/aps.63.125201
    [13] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究. 物理学报, doi: 10.7498/aps.62.055101
    [14] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, doi: 10.7498/aps.62.175204
    [15] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, doi: 10.7498/aps.61.245205
    [16] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, doi: 10.7498/aps.61.045205
    [17] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.59.8747
    [18] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, doi: 10.7498/aps.53.3440
    [19] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, doi: 10.7498/aps.52.109
    [20] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, doi: 10.7498/aps.49.1764
计量
  • 文章访问数:  93
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-06-18

/

返回文章
返回