搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用

方泽 潘泳全 戴栋 张俊勃

引用本文:
Citation:

基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用

方泽, 潘泳全, 戴栋, 张俊勃

Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation

Fang Ze, Pan Yong-Quan, Dai Dong, Zhang Jun-Bo
PDF
HTML
导出引用
  • 近年来, 以物理信息神经网络(PINNs)为代表的人工智能计算范式在等离子体数值模拟领域获得了极大关注, 但相关研究考虑的等离子体化学体系较为简化, 且基于PINNs求解更为复杂的多粒子低温等离子体流体模型的研究还尚处空白. 本文提出了一个通用的PINNs框架(源项解耦PINNs, Std-PINNs), 用于求解多粒子低温等离子体流体模型. Std-PINNs通过引入等效正离子, 并将电流连续性方程替代各粒子输运方程作为物理约束, 实现了重粒子输运方程源项与电子密度、平均电子能量的解耦, 极大降低了训练复杂度. 本文通过两个经典放电案例(低气压氩气辉光放电、大气压氦气辉光放电)展示了Std-PINNs在求解多粒子低温等离子体流体模型的应用, 并将结果与传统PINNs和有限元(FEM)模型进行了对比. 结果显示, 传统PINNs输出了完全错误的训练结果, 而Std-PINNs与FEM结果之间的L2相对误差能达到约10–2量级, 由此验证了Std-PINNs在模拟多粒子等离子体流体模型的可行性. Std-PINNs为低温等离子体模拟提供了新的思路, 并拓展了深度学习方法在复杂物理系统建模中的应用.
    In recent years, the artificial intelligence computing paradigm represented by physics-informed neural networks (PINNs) has received great attention in the field of plasma numerical simulation. However, the plasma chemical system considered in related research is relatively simplified, and the research on solving the more complex multi-particle low-temperature fluid model based on PINNs is still blank. In more complex chemical systems, the coupling relationship between particle densities and between particle densities and mean electron energy become more intricate. Therefore, the applicability of PINNs in dealing with sophisticated reaction systems needs further exploring and improving. In this work, we propose a general PINN framework (source term decoupled PINNs, Std-PINNs) for solving multi-particle low-temperature plasma fluid model. By introducing equivalent positive ions and replacing each particle transport equation with the current continuity equation as a physical constraint, Std-PINN splits the entire solution process into the training processes of two neural networks, realizing the decoupling of the source term of the heavy particle transport equation from the electron density and mean electron energy, which greatly reduces the complexity of neural network training. In this work, the application of Std-PINNs to solving multi-particle low-temperature plasma fluid models is demonstrated through two classic discharge cases with different complexity of reaction systems (low-pressure argon glow discharge and atmospheric-pressure helium glow discharge) and the performance of Std-PINN is compared with that of conventional PINN and finite element method (FEM). The results show that the training results output from the traditional PINN are completely incorrect due to the strong coupling correlation of each physical variable through the source terms of each particle transport equation, while the L2 relative error between Std-PINN and FEM results can reach up to ~10–2 , thus verifying the feasibility of Std-PINN in simulating multi-particle plasma fluid model. Std-PINN expands the application of deep learning method to modeling complex physical systems and provides new ideas for conducting low-temperature plasma simulations. In addition, this study provides novel insights into the field of artificial intelligence scientific computing: the mathematical form that describes the state of a physical system is not unique. By introducing equivalent physical variables, equations suitable for neural network solutions can be derived and combined with observable data to simplify problems.
      通信作者: 戴栋, ddai@scut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52377145)资助的课题.
      Corresponding author: Dai Dong, ddai@scut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52377145).
    [1]

    Sanito R C, You S J, Wang Y F 2021 J. Environ. Manage. 288 112380Google Scholar

    [2]

    Cheng H, Xu J X, Li X, Liu D W, Lu X P 2020 Phys. Plasmas 27 063514Google Scholar

    [3]

    Han Z J, Murdock A T, Seo D H, Bendavid A 2018 2D Mater. 5 032002Google Scholar

    [4]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [5]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817Google Scholar

    [6]

    Fang Z, Wang X J, Shao T, Zhang C 2017 IEEE Trans. Plasma Sci. 45 310Google Scholar

    [7]

    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002Google Scholar

    [8]

    Purwins H G 2011 IEEE Trans. Plasma Sci. 39 2112Google Scholar

    [9]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sci. Technol. 21 074003Google Scholar

    [10]

    Wang Q, Zhou X Y, Dai D, Huang Z E, Zhang D M 2021 Plasma Sources Sci. Technol. 30 05LT01Google Scholar

    [11]

    Wang Q, Ning W J, Dai D, Zhang Y H 2020 Plasma Process. Polym. 17 e1900182Google Scholar

    [12]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 104001Google Scholar

    [13]

    Biel W, Albanese R, Ambrosino R, et al. 2019 Fus. Eng. Des. 146 465Google Scholar

    [14]

    Logg A 2007 Archives of Computational Methods in Engineering (Vol.14) (Berlin: Springer) pp93–138Google Scholar

    [15]

    Eymard R, Gallouët T, Herbin R 2000 Handbook of Numerical Analysis (Vol. 7) (Amsterdam: Elsevier) pp713– 1018Google Scholar

    [16]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H H, Murphy A B, Schneider W F 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar

    [17]

    Neyts E C 2016 Plasma Chem. Plasma Process. 36 185Google Scholar

    [18]

    Mei D H, Zhu X B, Wu C F, Ashford B, Williams P T, Tu X 2016 Appl. Catal. B 182 525Google Scholar

    [19]

    Yi Y H, Li S K, Cui Z L, Hao Y Z, Zhang Y, Wang L, Liu P, Tu X, Xu X M, Guo H C, Bogaerts A 2021 Appl. Catal. B 296 120384Google Scholar

    [20]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [21]

    Raissi M, Yazdani A, Karniadakis G E 2020 Science 367 1026Google Scholar

    [22]

    De Florio M, Schiassi E, Ganapol B D, Furfaro R 2021 Phys. Fluids 33 047110Google Scholar

    [23]

    Arzani A, Wang J X, D’Souza R M 2021 Phys. Fluids 33 071905Google Scholar

    [24]

    Kawaguchi S, Takahashi K, Ohkama H, Satoh K 2020 Plasma Sources Sci. Technol. 29 025021Google Scholar

    [25]

    Cai S Z, Wang Z C, Wang S F, Perdikaris P, Karniadakis G E 2021 J. Heat Transfer 143 102719Google Scholar

    [26]

    Laubscher R 2021 Phys. Fluids 33 087101Google Scholar

    [27]

    Mathews A, Francisquez M, Hughes J W, Hatch D R, Zhu B, Rogers B N 2021 Phys. Rev. E 104 025205Google Scholar

    [28]

    Zhong L L, Gu Q, Wu B Y 2020 Comput. Phys. Commun. 257 107496Google Scholar

    [29]

    Zhong L L, Wu B Y, Wang Y 2022 Phys. Fluids 34 087116Google Scholar

    [30]

    Wan J, Wang Q, Dai D, Ning W J 2019 Phys. Plasmas 26 103510Google Scholar

    [31]

    Wang Q, Ning W J, Dai D, Zhang Y H, Ouyang J 2019 J. Phys. D: Appl. Phys. 52 205201Google Scholar

    [32]

    Glorot X, Bengio Y 2010 Proceedings of the 13th International Conference on Artificial Intelligence and Statistics Sardinia, Italy, May 13–15, 2010 pp249–256

    [33]

    Liu D C, Nocedal J 1989 Math. Program. 45 503Google Scholar

    [34]

    Kingma D P, Ba J L 2014 arXiv: 1412.6980 [cs. LG]

    [35]

    Wang S, Yu X, Perdikaris P 2022 J. Comput. Phys. 449 110768Google Scholar

    [36]

    Hagelaar G J M, Kroesen G M W 2000 J. Comput. Phys. 159 1Google Scholar

    [37]

    Blickle V, Speck T, Lutz C, Seifert U, Bechinger C 2007 Phys. Rev. Lett. 98 210601Google Scholar

    [38]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [39]

    Wang Q, Economou D J, Donnelly V M 2006 J. Appl. Phys. 100 023301Google Scholar

    [40]

    Dyatko N A, Ionikh Y Z, Kochetov I V, Marinov D L, Meshchanov A V, Napartovich A P, Petrov F B, Starostin S A 2008 J. Phys. D: Appl. Phys. 41 055204Google Scholar

    [41]

    Deloche R, Monchicourt P, Cheret M, Lambert F 1976 Phys. Rev. A 13 1140Google Scholar

    [42]

    Hagelaar G J M, De Hoog F J, Kroesen G M W 2000 Phys. Rev. E 62 1452Google Scholar

    [43]

    Hassé H R, Cook W R 1931 Philos. Mag. J. Sci. 12 554Google Scholar

    [44]

    Staack D, Farouk B, Gutsol A, Fridman A 2005 Plasma Sources Sci. Technol. 14 700Google Scholar

    [45]

    Wang Q, Dai D, Ning W J, Zhang Y H 2021 J. Phys. D: Appl. Phys. 54 115203Google Scholar

    [46]

    Tochikubo F, Shirai N, Uchida S 2011 Appl. Phys. Express 4 056001Google Scholar

    [47]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003Google Scholar

    [48]

    Pitchford L C, Alves L L, Bartschat K, et al. 2017 Plasma Process. Polym. 14 1600098Google Scholar

    [49]

    Zhu X M, Pu Y K 2009 J. Phys. D: Appl. Phys. 43 015204Google Scholar

    [50]

    Riccardi C, Barni R 2012 Chem. Kinet. 10 38396Google Scholar

    [51]

    Liu D X, Iza F, Wang X H, Ma Z Z, Rong M Z, Kong M G 2013 Plasma Sources Sci. Technol. 22 055016Google Scholar

    [52]

    Zhu M R, Zhong A, Dai D, Wang Q, Shao T, Ostrikov K K 2022 J. Phys. D: Appl. Phys. 55 355201Google Scholar

    [53]

    Pietanza L D, Guaitella O, Aquilanti V, et al 2021 Eur. Phys. J. D 75 237Google Scholar

  • 图 1  一维辉光放电模型的几何结构

    Fig. 1.  The geometry of the one-dimensional glow discharge model.

    图 2  Std-PINNs结构示意图

    Fig. 2.  Schematic diagram of the structure of the Std-PINNs.

    图 3  FEM, Std-PINNs与传统PINNs的数值结果比较(NN1输出)

    Fig. 3.  Comparison of the numerical results of FEM, Std-PINNs (the output of NN1) and traditional PINNs.

    图 4  FEM, Std-PINNs与传统PINNs的数值结果比较 (NN2输出)

    Fig. 4.  Comparison of the numerical results of FEM, Std-PINNs (the output of NN2) and traditional PINNs.

    图 5  应用传统PINNs时, 整个迭代过程中粒子输运方程与电子能量密度方程的损失函数值

    Fig. 5.  When the traditional PINNs is applied, the loss function values of the particle transport equation and the electron energy density equation during the whole iteration.

    图 6  应用传统PINNs时, 整个迭代过程中各粒子数密度与平均电子能量的相对L2误差

    Fig. 6.  When the traditional PINNs is applied, the relative L2 error of each particle number density and mean electron energy during the whole iteration.

    图 7  FEM, Std-PINNs (NN1输出)与传统PINNs的数值结果比较

    Fig. 7.  Comparison of the numerical results between the FEM, the Std-PINNs (the output of NN1) and traditional PINNs.

    图 8  FEM, Std-PINNs(NN2输出)与传统PINNs的数值结果比较

    Fig. 8.  Comparison of the numerical results between the FEM, the Std-PINNs (the output of NN2) and traditional PINNs.

    表 A1  各案例基准值

    Table A1.  Reference values for each case.

    案例${n_0}$/m–3${\phi _0}$/V${\bar \varepsilon _0}$/eV${L_0}$/m
    11×10131×10311×10–2
    25×10171×10311×10–4
    下载: 导出CSV

    表 1  低气压氩气辉光放电的碰撞反应

    Table 1.  Collision reaction of low pressure argon glow discharge.

    序号 反应方程 速率常数 焓/eV 参考文献
    1 e + Ar $\Rightarrow $ e + Ar f ($ \overline{\boldsymbol{\varepsilon}} $) [48]
    2 e + Ar $\Rightarrow $ e + Ar* f ($ \overline{\boldsymbol{\varepsilon}} $) 11.5 [48]
    3 e + Ar $\Rightarrow $ 2e + Ar+ f ($ \overline{\boldsymbol{\varepsilon}} $) 15.8 [48]
    4 e + Ar* $\Rightarrow $ 2e + Ar+ f ($ \overline{\boldsymbol{\varepsilon}} $) 4.43 [48]
    5 Ar* + Ar* $\Rightarrow $ e + Ar+ Ar+ 6.2×10–16 [40]
    6 Ar* + Ar $\Rightarrow $ Ar+ Ar 3×10–21 [40]
    注: 表中f($ \overline{\boldsymbol{\varepsilon}} $)代表电子碰撞反应的速率常数, 为平均电子能的函数, 通过向Bolsig+导入电子碰撞反应截面数据计算得到; 双体反应的速率常数单位为m3/s.
    下载: 导出CSV

    表 2  大气压氦气辉光放电的碰撞反应

    Table 2.  Collision reaction of atmospheric pressure helium glow discharge.

    序号 反应方程 速率常数 焓/eV 参考文献
    1 e + He $\Rightarrow $ e + He f ($ \overline{\boldsymbol{\varepsilon}} $) [48]
    2 e + He $\Rightarrow $ e + He* f ($ \overline{\boldsymbol{\varepsilon}} $) 19.8 [48]
    3 e + He $\Rightarrow $ 2e + He+ f ($ \overline{\boldsymbol{\varepsilon}} $) 24.6 [48]
    4 e + He* $\Rightarrow $ 2e + He+ $1.28 \times 10^{-13}\times T_{\rm e}^{0.6}\times \exp(-4.78/T_{\rm e}) $ 4.8 [41]
    5 e + He* $\Rightarrow $ e + He 2.9 × 10–15 –19.8 [41]
    6 e + ${\mathrm{He}}_2^* $ $\Rightarrow $ e + 2He 3.8 × 10–15 –17.9 [39]
    7 2e + He+ $\Rightarrow $ e + He* 6.0 × 10–32 × (Te/0.026)–4.4 –4.8 [4]
    8 2e + ${\mathrm{He}}_2^+ $ $\Rightarrow $ e + He + He* 4.0 × 10–32 × (Te/0.026)–1 [39]
    9 e + He+ ${\mathrm{He}}_2^+ $ $\Rightarrow $2He + He* 5 × 10–39 × (Te/0.026)–1 [39]
    10 2e + ${\mathrm{He}}_2^+ $ $\Rightarrow $ e + ${\mathrm{He}}_2^* $ 4.0 × 10–32 × (Te/0.026)–1 [39]
    11 e + He+ He+ $\Rightarrow $ He + He* 5.0 × 10–39 × (Te/0.026)–1 [39]
    12 e + He+ ${\mathrm{He}}_2^+ $ $\Rightarrow $ He + ${\mathrm{He}}_2^* $ 1.0 × 10–38 × (Te/0.026)–2 [39]
    13 e + ${\mathrm{He}}_2^* $ $\Rightarrow $ 2e + ${\mathrm{He}}_2^+ $ 5.0 × 10–15 × (Te/0.026)–1 3.4 [39]
    14 He* + 2He $\Rightarrow $ 3He 2.0 × 10–46 [39]
    15 2He* $\Rightarrow $ e + ${\mathrm{He}}_2^+ $ 2.9 × 10–15 [39]
    16 2He + He+ $\Rightarrow $ He + ${\mathrm{He}}_2^+ $ 1.4 × 10–43 [4]
    17 2He + He* $\Rightarrow $ ${\mathrm{He}}_2^* $ + He 2 × 10–46 [4]
    18 He* + ${\mathrm{He}}_2^* $ $\Rightarrow $ e + ${\mathrm{He}}_2^+ $ + He 5 × 10–16 [4]
    19 ${\mathrm{He}}_2^* $ + ${\mathrm{He}}_2^* $ $\Rightarrow $ e + ${\mathrm{He}}_2^+ $ + 2He 1.2 × 10–15 [4]
    20 ${\mathrm{He}}_2^* $ + He $\Rightarrow $ 3He 1.5 × 10–21 [4]
    注: 表中He*代表He(23S)及He(21S), He2*则代表He2(${\rm a}{}^3\Sigma_{\rm u}^+ $) .
    下载: 导出CSV
  • [1]

    Sanito R C, You S J, Wang Y F 2021 J. Environ. Manage. 288 112380Google Scholar

    [2]

    Cheng H, Xu J X, Li X, Liu D W, Lu X P 2020 Phys. Plasmas 27 063514Google Scholar

    [3]

    Han Z J, Murdock A T, Seo D H, Bendavid A 2018 2D Mater. 5 032002Google Scholar

    [4]

    Lazarou C, Belmonte T, Chiper A S, Georghiou G E 2016 Plasma Sources Sci. Technol. 25 055023Google Scholar

    [5]

    Guikema J, Miller N, Niehof J, Klein M, Walhout M 2000 Phys. Rev. Lett. 85 3817Google Scholar

    [6]

    Fang Z, Wang X J, Shao T, Zhang C 2017 IEEE Trans. Plasma Sci. 45 310Google Scholar

    [7]

    Trelles J P 2016 J. Phys. D: Appl. Phys. 49 393002Google Scholar

    [8]

    Purwins H G 2011 IEEE Trans. Plasma Sci. 39 2112Google Scholar

    [9]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sci. Technol. 21 074003Google Scholar

    [10]

    Wang Q, Zhou X Y, Dai D, Huang Z E, Zhang D M 2021 Plasma Sources Sci. Technol. 30 05LT01Google Scholar

    [11]

    Wang Q, Ning W J, Dai D, Zhang Y H 2020 Plasma Process. Polym. 17 e1900182Google Scholar

    [12]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 104001Google Scholar

    [13]

    Biel W, Albanese R, Ambrosino R, et al. 2019 Fus. Eng. Des. 146 465Google Scholar

    [14]

    Logg A 2007 Archives of Computational Methods in Engineering (Vol.14) (Berlin: Springer) pp93–138Google Scholar

    [15]

    Eymard R, Gallouët T, Herbin R 2000 Handbook of Numerical Analysis (Vol. 7) (Amsterdam: Elsevier) pp713– 1018Google Scholar

    [16]

    Bogaerts A, Tu X, Whitehead J C, Centi G, Lefferts L, Guaitella O, Azzolina-Jury F, Kim H H, Murphy A B, Schneider W F 2020 J. Phys. D: Appl. Phys. 53 443001Google Scholar

    [17]

    Neyts E C 2016 Plasma Chem. Plasma Process. 36 185Google Scholar

    [18]

    Mei D H, Zhu X B, Wu C F, Ashford B, Williams P T, Tu X 2016 Appl. Catal. B 182 525Google Scholar

    [19]

    Yi Y H, Li S K, Cui Z L, Hao Y Z, Zhang Y, Wang L, Liu P, Tu X, Xu X M, Guo H C, Bogaerts A 2021 Appl. Catal. B 296 120384Google Scholar

    [20]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [21]

    Raissi M, Yazdani A, Karniadakis G E 2020 Science 367 1026Google Scholar

    [22]

    De Florio M, Schiassi E, Ganapol B D, Furfaro R 2021 Phys. Fluids 33 047110Google Scholar

    [23]

    Arzani A, Wang J X, D’Souza R M 2021 Phys. Fluids 33 071905Google Scholar

    [24]

    Kawaguchi S, Takahashi K, Ohkama H, Satoh K 2020 Plasma Sources Sci. Technol. 29 025021Google Scholar

    [25]

    Cai S Z, Wang Z C, Wang S F, Perdikaris P, Karniadakis G E 2021 J. Heat Transfer 143 102719Google Scholar

    [26]

    Laubscher R 2021 Phys. Fluids 33 087101Google Scholar

    [27]

    Mathews A, Francisquez M, Hughes J W, Hatch D R, Zhu B, Rogers B N 2021 Phys. Rev. E 104 025205Google Scholar

    [28]

    Zhong L L, Gu Q, Wu B Y 2020 Comput. Phys. Commun. 257 107496Google Scholar

    [29]

    Zhong L L, Wu B Y, Wang Y 2022 Phys. Fluids 34 087116Google Scholar

    [30]

    Wan J, Wang Q, Dai D, Ning W J 2019 Phys. Plasmas 26 103510Google Scholar

    [31]

    Wang Q, Ning W J, Dai D, Zhang Y H, Ouyang J 2019 J. Phys. D: Appl. Phys. 52 205201Google Scholar

    [32]

    Glorot X, Bengio Y 2010 Proceedings of the 13th International Conference on Artificial Intelligence and Statistics Sardinia, Italy, May 13–15, 2010 pp249–256

    [33]

    Liu D C, Nocedal J 1989 Math. Program. 45 503Google Scholar

    [34]

    Kingma D P, Ba J L 2014 arXiv: 1412.6980 [cs. LG]

    [35]

    Wang S, Yu X, Perdikaris P 2022 J. Comput. Phys. 449 110768Google Scholar

    [36]

    Hagelaar G J M, Kroesen G M W 2000 J. Comput. Phys. 159 1Google Scholar

    [37]

    Blickle V, Speck T, Lutz C, Seifert U, Bechinger C 2007 Phys. Rev. Lett. 98 210601Google Scholar

    [38]

    Hagelaar G J M, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [39]

    Wang Q, Economou D J, Donnelly V M 2006 J. Appl. Phys. 100 023301Google Scholar

    [40]

    Dyatko N A, Ionikh Y Z, Kochetov I V, Marinov D L, Meshchanov A V, Napartovich A P, Petrov F B, Starostin S A 2008 J. Phys. D: Appl. Phys. 41 055204Google Scholar

    [41]

    Deloche R, Monchicourt P, Cheret M, Lambert F 1976 Phys. Rev. A 13 1140Google Scholar

    [42]

    Hagelaar G J M, De Hoog F J, Kroesen G M W 2000 Phys. Rev. E 62 1452Google Scholar

    [43]

    Hassé H R, Cook W R 1931 Philos. Mag. J. Sci. 12 554Google Scholar

    [44]

    Staack D, Farouk B, Gutsol A, Fridman A 2005 Plasma Sources Sci. Technol. 14 700Google Scholar

    [45]

    Wang Q, Dai D, Ning W J, Zhang Y H 2021 J. Phys. D: Appl. Phys. 54 115203Google Scholar

    [46]

    Tochikubo F, Shirai N, Uchida S 2011 Appl. Phys. Express 4 056001Google Scholar

    [47]

    Zhang Y H, Ning W J, Dai D, Wang Q 2019 Plasma Sources Sci. Technol. 28 075003Google Scholar

    [48]

    Pitchford L C, Alves L L, Bartschat K, et al. 2017 Plasma Process. Polym. 14 1600098Google Scholar

    [49]

    Zhu X M, Pu Y K 2009 J. Phys. D: Appl. Phys. 43 015204Google Scholar

    [50]

    Riccardi C, Barni R 2012 Chem. Kinet. 10 38396Google Scholar

    [51]

    Liu D X, Iza F, Wang X H, Ma Z Z, Rong M Z, Kong M G 2013 Plasma Sources Sci. Technol. 22 055016Google Scholar

    [52]

    Zhu M R, Zhong A, Dai D, Wang Q, Shao T, Ostrikov K K 2022 J. Phys. D: Appl. Phys. 55 355201Google Scholar

    [53]

    Pietanza L D, Guaitella O, Aquilanti V, et al 2021 Eur. Phys. J. D 75 237Google Scholar

  • [1] 魏振宇, 刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241550
    [2] 陈锦峰, 朱林繁. 等离子体刻蚀建模中的电子碰撞截面数据. 物理学报, 2024, 73(9): 095201. doi: 10.7498/aps.73.20231598
    [3] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真. 物理学报, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [4] 田十方, 李彪. 基于梯度优化物理信息神经网络求解复杂非线性问题. 物理学报, 2023, 72(10): 100202. doi: 10.7498/aps.72.20222381
    [5] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [6] 张权治, 张雷宇, 马方方, 王友年. 多孔材料的低温刻蚀技术. 物理学报, 2021, 70(9): 098104. doi: 10.7498/aps.70.20202245
    [7] 何寿杰, 周佳, 渠宇霄, 张宝铭, 张雅, 李庆. 氩气空心阴极放电复杂动力学过程的模拟研究. 物理学报, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [8] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟. 物理学报, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [9] 孙安邦, 李晗蔚, 许鹏, 张冠军. 流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型. 物理学报, 2017, 66(19): 195101. doi: 10.7498/aps.66.195101
    [10] 王学扬, 齐志华, 宋颖, 刘东平. 等离子体放电活化生理盐水杀菌应用研究. 物理学报, 2016, 65(12): 123301. doi: 10.7498/aps.65.123301
    [11] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [12] 何曼丽, 王晓, 张明, 王黎, 宋蕊. 低温等离子体中H2(D2和T2)的振动分布. 物理学报, 2014, 63(12): 125201. doi: 10.7498/aps.63.125201
    [13] 赵朋程, 廖成, 杨丹, 钟选明, 林文斌. 基于流体模型和非平衡态电子能量分布函数的高功率微波气体击穿研究. 物理学报, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [14] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [15] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [16] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [17] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [18] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [19] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, 2003, 52(1): 109-114. doi: 10.7498/aps.52.109
    [20] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
计量
  • 文章访问数:  1926
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-10
  • 修回日期:  2024-05-14
  • 上网日期:  2024-06-18
  • 刊出日期:  2024-07-20

/

返回文章
返回