搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型

孙安邦 李晗蔚 许鹏 张冠军

引用本文:
Citation:

流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型

孙安邦, 李晗蔚, 许鹏, 张冠军

Monte Carlo simulations of electron transport coefficients in low temperature streamer discharge plasmas

Sun An-Bang, Li Han-Wei, Xu Peng, Zhang Guan-Jun
PDF
导出引用
  • 流体或者粒子-流体混合数值仿真是研究流注放电基本物理机制的常用手段,而精确的电子输运系数是保证其仿真正确性的必要前提.鉴于现有电子输运系数求解工具存在一定缺陷,本文开发了采用蒙特卡罗方法求解低温等离子体中电子输运系数的仿真工具,测试表明其准确性和精确度均较高.研究了氮氧气体混合比及大气压下三体碰撞吸附对电子输运系数的影响.氮气中流注放电仿真表明,流体仿真中采用本模型改进后的电子输运系数可显著改善流注通道内部的等离子体参数分布.
    Streamer is usually present at the initial stage of atmospheric pressure air discharge, which occurs in nature as a precursor to lightning, transient luminous events in upper atmosphere and has much potential applications in industry, such as the treatment of polluted gases/liquids, assisted combustion, plasma enhanced deposition etc. Streamer is a multi-scale problem both in time and in space, which brings much difficulty to the conventional diagnostic approaches. In past decades, fluid or particle-fluid hybrid models have been frequently used for understanding the mechanisms of streamer discharges because of their high efficiencies of calculations. Accuracies of the electron transport coefficients (including drift/diffusion coefficient, ionization/attachment coefficient, electron mean energy and extra) play a key role in ensuring the correctness of the fluid or hybrid simulations. As far as we know, BOLSIG+ and MAGBOLTZ are two typical tools for obtaining the electron transport coefficients and have been widely utilized in previous models. BOLSIG+ uses two-term approximation which is not sufficient for some molecular gases, MAGBOLTZ cannot calculate the bulk transport coefficients:these data are required for some models. METHES is an additional tool for computing electron transport coefficients, however, specific platform is required which is not very user-friendly. As sorts of drawbacks exist in currently available calculating tools, in the paper, a Monte Carlo model is developed for computing the electron transport coefficients in gases, the model is flexible to choose any type of gas mixture and its accuracy has been validated by comparing with BOLSIG+ and METHES. Furthermore, the influences of N2-O2 mixture and three-body attachment process in high gas pressures on the transport coefficient are investigated. It is worth mentioning that three-body attachment process can significantly change the electron transport properties at a relatively low reduced electric field. Thus, specific attention must be paid to the transport coefficients if simulation is performed at a high pressure. In addition, differences between the bulk and flux coefficients are analyzed which are not distinguished in some previous models. Finally, we further validate the present Monte Carlo model by performing simulation of streamer discharge in atmospheric N2, which shows that the improved electron transport coefficient from our Monte Carlo model can improve the simulated plasma properties, in particular at the interior of the streamer channel. The existence of divergence at the tip of the streamer channel might be due to our local field approximation; if a density gradient term is included in the impact ionization term and local electron energy approximation of the electron transport coefficients is used, the accuracy of the fluid can be improved further.
      通信作者: 孙安邦, anbang.sun@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51777164)、西安交通大学青年拔尖人才支持计划(批准号:DQ1J008)、电力设备电气绝缘国家重点实验室(批准号:EIPE17311)和中央高校基本科研业务费专项资金(批准号:1191329723)资助的课题.
      Corresponding author: Sun An-Bang, anbang.sun@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51777164), the Young Talent Plan of Xi'an Jiaotong University, China (Grant No. DQ1J008), State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE17311), and the Fundamental Research Funds for the Central Universities, China (Grant No. 1191329723).
    [1]

    Raizer Y P 1991 Gas Discharge Physics (Berlin:Springer) pp324-343

    [2]

    Ebert U, Sentman D 2008 J. Phys. D:Appl. Phys. 41 230301

    [3]

    Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E 2010 J. Geophys. Res. 115 A7

    [4]

    Shao T, Yan P 2015 Atmospheric Gas Discharge and Its Plasma Applications (Beijing:Science Press) pp385-611 (in Chinese)[邵涛, 严萍 2015 大气压气体放电及其等离子体应用 (北京:科学出版社) 第385611页]

    [5]

    Li C, Teunissen J, Nool M, Hundsdorfer W, Ebert U 2012 Plasma Sources Sci. Technol. 21 055019

    [6]

    Li C, Ebert U, Hundsdorfer W 2012 J. Comput. Phys. 231 1020

    [7]

    www.bolsig.laplace.univ-tlse.fr version:07/2015[2017-6-13]

    [8]

    Biagi S F 1999 Nucl. Instrum. Methods A 421 234

    [9]

    Bankovic A, Dujko S, White R D, Buckman S J, Petrovic A L 2012 Eur. Phys. J. D 66 174

    [10]

    Rabie M, Franck C M 2016 Comput. Phys. Commun. 203 268

    [11]

    Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35

    [12]

    Sun A B, Teunissen J, Ebert U 2013 Geophys. Res. Lett. 40 2417

    [13]

    Sun A B, Teunissen J, Ebert U 2014 J. Phys. D:Appl. Phys. 47 445205

    [14]

    Lippert R A, Bowers K J, Dror R O, Eastwood M P, Gregersen B A, Klepeis J L, Kolossvary I, Shaw D E 2007 J. Chem. Phys. 126 046101

    [15]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65

    [16]

    Yousfi M, Hennad A, Alkaa A 1994 Phys. Rev. E 9 4

    [17]

    Bonjaković D, Petrovic Z L, White R D, Dujko S 2014 J. Phys. D:Appl. Phys. 47 435203

    [18]

    Dujko S, Ebert U, White R D, Petrovic Z L 2011 Jpn. J. Appl. Phys. 50 08JC01

    [19]

    Wormeester G, Pancheshnyi S, Luque A, Nijdam S, Ebert U 2010 J. Phys. D:Appl. Phys. 43 505201

    [20]

    Teunissen J, Sun A B, Ebert U 2014 J. Phys. D:Appl. Phys. 47 365203

    [21]

    Li C, Brok W J M, Ebert U, van der Mullen J J A M 2007 J. Appl. Phys. 101 123305

    [22]

    Li C, Ebert U, Hundsdorfer W 2010 J. Comput. Phys. 229 200

  • [1]

    Raizer Y P 1991 Gas Discharge Physics (Berlin:Springer) pp324-343

    [2]

    Ebert U, Sentman D 2008 J. Phys. D:Appl. Phys. 41 230301

    [3]

    Ebert U, Nijdam S, Li C, Luque A, Briels T, van Veldhuizen E 2010 J. Geophys. Res. 115 A7

    [4]

    Shao T, Yan P 2015 Atmospheric Gas Discharge and Its Plasma Applications (Beijing:Science Press) pp385-611 (in Chinese)[邵涛, 严萍 2015 大气压气体放电及其等离子体应用 (北京:科学出版社) 第385611页]

    [5]

    Li C, Teunissen J, Nool M, Hundsdorfer W, Ebert U 2012 Plasma Sources Sci. Technol. 21 055019

    [6]

    Li C, Ebert U, Hundsdorfer W 2012 J. Comput. Phys. 231 1020

    [7]

    www.bolsig.laplace.univ-tlse.fr version:07/2015[2017-6-13]

    [8]

    Biagi S F 1999 Nucl. Instrum. Methods A 421 234

    [9]

    Bankovic A, Dujko S, White R D, Buckman S J, Petrovic A L 2012 Eur. Phys. J. D 66 174

    [10]

    Rabie M, Franck C M 2016 Comput. Phys. Commun. 203 268

    [11]

    Sun A B, Becker M M, Loffhagen D 2016 Comput. Phys. Commun. 206 35

    [12]

    Sun A B, Teunissen J, Ebert U 2013 Geophys. Res. Lett. 40 2417

    [13]

    Sun A B, Teunissen J, Ebert U 2014 J. Phys. D:Appl. Phys. 47 445205

    [14]

    Lippert R A, Bowers K J, Dror R O, Eastwood M P, Gregersen B A, Klepeis J L, Kolossvary I, Shaw D E 2007 J. Chem. Phys. 126 046101

    [15]

    Birdsall C K 1991 IEEE Trans. Plasma Sci. 19 65

    [16]

    Yousfi M, Hennad A, Alkaa A 1994 Phys. Rev. E 9 4

    [17]

    Bonjaković D, Petrovic Z L, White R D, Dujko S 2014 J. Phys. D:Appl. Phys. 47 435203

    [18]

    Dujko S, Ebert U, White R D, Petrovic Z L 2011 Jpn. J. Appl. Phys. 50 08JC01

    [19]

    Wormeester G, Pancheshnyi S, Luque A, Nijdam S, Ebert U 2010 J. Phys. D:Appl. Phys. 43 505201

    [20]

    Teunissen J, Sun A B, Ebert U 2014 J. Phys. D:Appl. Phys. 47 365203

    [21]

    Li C, Brok W J M, Ebert U, van der Mullen J J A M 2007 J. Appl. Phys. 101 123305

    [22]

    Li C, Ebert U, Hundsdorfer W 2010 J. Comput. Phys. 229 200

  • [1] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用. 物理学报, 2024, 73(14): 145201. doi: 10.7498/aps.73.20240343
    [2] 陈锦峰, 朱林繁. 等离子体刻蚀建模中的电子碰撞截面数据. 物理学报, 2024, 73(9): 095201. doi: 10.7498/aps.73.20231598
    [3] 崔岁寒, 左伟, 黄健, 李熙腾, 陈秋皓, 郭宇翔, 杨超, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 面向复杂求解域的高效粒子网格/蒙特卡罗模型与阳极层离子源仿真. 物理学报, 2023, 72(8): 085202. doi: 10.7498/aps.72.20222394
    [4] 邹丹旦, 涂忱胜, 胡平子, 李春华, 钱沐杨. 脉冲电磁驱动低温螺旋流注放电机理. 物理学报, 2023, 72(11): 115204. doi: 10.7498/aps.72.20230034
    [5] 张权治, 张雷宇, 马方方, 王友年. 多孔材料的低温刻蚀技术. 物理学报, 2021, 70(9): 098104. doi: 10.7498/aps.70.20202245
    [6] 宋萌萌, 周前红, 孙强, 张含天, 杨薇, 董烨. 电子散射和能量分配方式对电子输运系数的影响. 物理学报, 2021, 70(13): 135101. doi: 10.7498/aps.70.20202021
    [7] 邹丹旦, 蔡智超, 吴鹏, 李春华, 曾晗, 张红丽, 崔春梅. 脉冲放电产生螺旋流注的等离子体特性研究. 物理学报, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [8] 王学扬, 齐志华, 宋颖, 刘东平. 等离子体放电活化生理盐水杀菌应用研究. 物理学报, 2016, 65(12): 123301. doi: 10.7498/aps.65.123301
    [9] 何曼丽, 王晓, 张明, 王黎, 宋蕊. 低温等离子体中H2(D2和T2)的振动分布. 物理学报, 2014, 63(12): 125201. doi: 10.7498/aps.63.125201
    [10] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, 2012, 61(24): 245205. doi: 10.7498/aps.61.245205
    [11] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [12] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [13] 刘小良, 黄晓梅, 徐慧, 任意. Fibonacci序列的统计属性和电子输运系数. 物理学报, 2010, 59(6): 4202-4210. doi: 10.7498/aps.59.4202
    [14] 肖纳敏, 李殿中, 李依依. Fe-C合金中形变诱导动态相变的蒙特卡罗模拟. 物理学报, 2009, 58(13): 169-S176. doi: 10.7498/aps.58.169
    [15] 王建华, 金传恩. 蒙特卡罗模拟在辉光放电鞘层离子输运研究中的应用. 物理学报, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
    [16] 王新新, 芦明泽, 蒲以康. 空气中大气压下均匀辉光放电的可能性. 物理学报, 2002, 51(12): 2778-2785. doi: 10.7498/aps.51.2778
    [17] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [18] 宫野, 温晓军, 张鹏云, 邓新绿. 圆柱模型下电子回旋共振微波等离子体离子输运过程的数值研究. 物理学报, 1997, 46(12): 2376-2383. doi: 10.7498/aps.46.2376
    [19] 郭小明, 白秀庭. 建立低温等离子体理论模型的数学方法. 物理学报, 1995, 44(4): 565-569. doi: 10.7498/aps.44.565
    [20] 王德真, 马腾才, 宫野. 等离子体源离子注入球形靶的蒙特-卡罗模拟. 物理学报, 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
计量
  • 文章访问数:  6842
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-13
  • 修回日期:  2017-07-17
  • 刊出日期:  2017-10-05

/

返回文章
返回