搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型双过渡金属MXene热电输运性能第一性原理计算

黄盛星 陈健 王文菲 王旭东 姚曼

引用本文:
Citation:

新型双过渡金属MXene热电输运性能第一性原理计算

黄盛星, 陈健, 王文菲, 王旭东, 姚曼

First principle calculation of thermoelectric transport performances of new dual transition metal MXene

Huang Sheng-Xing, Chen Jian, Wang Wen-Fei, Wang Xu-Dong, Yao Man
PDF
HTML
导出引用
  • 二维双过渡金属MXene相较于单一过渡金属MXene, 有着更高的可调控性, 在热电器件方面有着潜在的应用. 本文通过第一性原理的计算方法结合玻尔兹曼输运理论, 研究了新型二维双过渡金属MXene单层TiZrCO2和VYCO2的稳定性和热电性能. 结果表明, 两者的热电输运性能优良. 计算预测的结果: 在最优载流子浓度下, 300 K时, p型TiZrCO2功率因子为11.40 mW/(m·K2), 远高于n型, p型VYCO2功率因子 (2.80 mW/(m·K2))和n型(2.20 mW/(m·K2))大小类似. 300 K下, TiZrCO2和VYCO2的晶格热导率较低, 分别为5.08 W/(m·K)和3.22 W/(m·K), 并且随着温度升高进一步降低, 900 K时为2.14 W/(m·K)和1.09 W/(m·K). TiZrCO2和VYCO2的热电优值随温度升高而增大, 温度为900 K时, p型TiZrCO2和VYCO2的热电优值分别达到1.83和0.93, 优于两者n型的0.23和0.84. 双过渡金属MXene TiZrCO2和VYCO2相比单一过渡金属MXene (如Sc2C(OH)2, ZT = 0.5)具有更好的热电性能, 有潜力作为综合性能优良的新型热电材料. 本文采用的一套计算方法亦可为新型双过渡金属元素MXene热电性能探索提供一定借鉴.
    The quantum restriction effect of charge carriers in two-dimensional materials can significantly improve their power factors. MXene, as a new type of two-dimensional double transition metal material, has attracted extensive attention due to thermoelectric properties, and higher controllability than single transition metal MXene, which has potential applications in thermoelectric devices. In this work, new two-dimensional monolayer double transition metal MXene, i.e. TiZrCO2 and VYCO2, are designed and their stabilities, electronic and thermoelectric properties are studied by the first principles and Boltzmann transport theory. It has been shown that both are indirect bandgap semiconductors with mechanical, thermodynamic and kinetic stability, and their thermoelectric properties (Seebeck coefficients, electrical and electronic thermal conductivities and lattice thermal conductivities) in a temperature range from 300 K to 900 K are studied. For the optimal carrier concentration at 300 K, the p-type TiZrCO2 power factor is 11.40 mW/(m·K2), much higher than that of n-type one, and the VYCO2 power factor of p-type (2.80 mW/(m·K2)) and n-type (2.20 mW/(m·K2)) are similar to each other. At 300 K, TiZrCO2 and VYCO2 have low lattice thermal conductivities of 5.08 W/(m·K) and 3.22 W/(m·K), respectively, and the contributions of optical phonon to the lattice thermal conductivity are both about 30%, i.e. 2.14 W/(m·K) and 1.09 W/(m·K) at 900 K, respectively. At the same time, it is found that at 300 K, when the material sizes of TiZrCO2 and VYCO2 are within 12.84 nm and 5.47 nm respectively, their lattice thermal conductivities are almost unchanged, and can be adjusted by adjusting the compositions. At 900 K, the thermoelectric value of p-type TiZrCO2 and VYCO2 reach 1.83 and 0.93, respectively, which are better than those of n-type, 0.23 and 0.84. The double transition metals MXene TiZrCO2 and VYCO2 have better thermoelectric properties than the single transition metal MXene (such as Sc2C(OH)2, ZT = 0.5), and have the potential applications in new thermoelectric materials with excellent comprehensive properties. A set of calculation methods used in this paper can also provide some reference for exploring the thermoelectric properties of a new double transition metal element MXene.
      通信作者: 姚曼, yaoman@dlut.edu.cn
      Corresponding author: Yao Man, yaoman@dlut.edu.cn
    [1]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [4]

    Rana G, Gupta R, Bera C 2023 Appl. Phys. Lett. 122 063902Google Scholar

    [5]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111Google Scholar

    [6]

    Heremans J P, Jovovic V, Toberer E S, et al. 2008 Science 321 554Google Scholar

    [7]

    Joshi G, Lee H, Lan Y C, Wang X W, Zhu G H, Wang D Z, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z F 2008 Nano Lett. 8 4670Google Scholar

    [8]

    Chen X X, Wu H J, Cui J, Xiao Y, Zhang Y, He J Q, Chen Y, Cao J, Cai W, Pennycook S J, Liu Z H, Zhao L D, Sui J H 2018 Nano Energy 52 246Google Scholar

    [9]

    Ruleova P, Drasar C, Lostak P, Li C P, Ballikaya S, Uher C 2010 Mater. Chem. Phys. 119 299Google Scholar

    [10]

    Zhao L D, He J Q, Berardan D, Lin Y, Li J F, Nan C W, Dragoe N 2014 Energ. Environ. Sci. 7 2900Google Scholar

    [11]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [12]

    Ramanathan A A, Khalifeh J M 2018 IEEE Trans. Nanotechnol. 17 974Google Scholar

    [13]

    Li M L, Wang N, Jiang M, Xiao H Y, Zhang H B, Liu Z J, Zu X T, Qiao L 2019 J. Mater. Chem. C 7 11029Google Scholar

    [14]

    Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X 2017 Mater. Design 114 161Google Scholar

    [15]

    Khazaei M, Ranjbar A, Arai M, Yunoki S 2016 Phys. Rev. B 94 125152Google Scholar

    [16]

    王剑, 周榆力 2020 西华大学学报(自然科学版) 39 76Google Scholar

    Wang J, Zhou Y L 2020 J. Xihua Univ. (Natural Science Edition) 39 76Google Scholar

    [17]

    Kumar S, Schwingenschlögl U T 2016 Phys. Rev. B 94 035405Google Scholar

    [18]

    Gandi A N, Alshareef H N, Schwingenschlögl U 2016 Chem. Mater. 28 1647Google Scholar

    [19]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R, Gogotsi Y, Barsoum M W 2015 Acs Nano 9 9507Google Scholar

    [20]

    Jing Z A, Wang H Y, Feng X H, Xiao B, Ding Y C, Wu K, Cheng Y H 2019 J. Phys. Chem. Lett. 10 5721Google Scholar

    [21]

    Kim H, Anasori B, Gogotsi Y, Alshareef H N 2017 Chem. Mater. 29 6472Google Scholar

    [22]

    Karmakar S, Saha-Dasgupta T 2020 Phys. Rev. Mater. 4 124007Google Scholar

    [23]

    Chang W L, Sun Z Q, Zhang Z M, Wei X P, Tao X 2023 J. Phys. Chem. Solids 176 111210Google Scholar

    [24]

    Xiong K W, Cheng Z Q, Liu J P, Liu P F, Zi Z F 2023 Rsc Adv. 13 7972Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [28]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [29]

    Madsen G K H, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140Google Scholar

    [30]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [31]

    Zhang Y, Maginn E J 2012 J. Phys. Chem. B 116 10036Google Scholar

    [32]

    Togo A, Tanaka I 2015 Scripta Mater. 108 1Google Scholar

    [33]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [34]

    Born M, Huang K 1955 Am. J. Phys. 23 474Google Scholar

    [35]

    Ouyang B, Chen S D, Jing Y H, Wei T R, Xiong S Y, Donadio D 2018 J. Materiomics 4 329Google Scholar

    [36]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [37]

    Girotto N, Novko D 2023 Phys. Rev. B 107 064310Google Scholar

    [38]

    Xiang J, Ali R N, Yang Y, Zheng Z, Xiang B, Cui X 2019 Physica E 109 248Google Scholar

    [39]

    Sahoo S, Gaur A P, Ahmadi M, Guinel, M J F, Katiyar R S 2013 J. Phys. Chem. C. 117 9042Google Scholar

    [40]

    Wei X P, Shen J, Du L L, Chang W L, Tao X M 2022 Phys. Scripta 97 085706Google Scholar

    [41]

    Zha X H, Yin J, Zhou Y, Huang Q, Luo K, Lang J, Francisco J S, He J, Du S 2016 J. Phys. Chem. C 120 15082Google Scholar

    [42]

    Park T, Cho K, Kim S 2021 Adv. Mater. Technol. 6 2100590Google Scholar

    [43]

    Wu H, Gu J, Li Z, Liu W, Bao H, Lin H, Yue Y 2022 J. Phys. Condens. Matter. 34 155704Google Scholar

    [44]

    Wang L, Liu Q, Zhang Y B 2021 Chin. Phys. B 30 020506Google Scholar

    [45]

    董文欣, 李铁平, 张莉, 丁迎春, 何开华 2025 原子与分子物理学报 42 046007Google Scholar

    Dong W X, Li T P, Zhang L, Ding Y C, He K H 2025 J. At. Mol. Phys. 42 046007Google Scholar

    [46]

    Guo Z L, Miao N H, Zhou J, Pan Y C, Sun Z M 2018 Phys. Chem. Chem. Phy. 20 19689Google Scholar

    [47]

    刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑 2023 化工学报 74 3968Google Scholar

    Liu C Y, Guan B, Zhong J B, Xu Y F, Jiang X H, Li D 2023 CIESC J. 74 3968Google Scholar

    [48]

    Pang G J, Zhang B, Meng F C, Liu Z, Chen Y, Li W 2023 Phys. Rev. B 108 054303Google Scholar

    [49]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

  • 图 1  单层TiZrCO2和VYCO2 4×4×1超胞结构俯视图(a), (b)和侧视图 (c), (d)

    Fig. 1.  Top view (a), (b) and side view (c), (d) of monolayer TiZrCO2 and VYCO2 4×4×1 supercellular structure.

    图 2  单层TiZrCO2 (a)和VYCO2 (b)声子色散曲线和声子态密度

    Fig. 2.  Phonon dispersion curve and phonon state density of monolayer TiZrCO2 (a) and VYCO2 (b).

    图 3  单层TiZrCO2 (a)和VYCO2 (b)在HSE06泛函下的能带结构及态密度图

    Fig. 3.  Band structure and state density of monolayer TiZrCO2 (a) and VYCO2 (b) under HSE06 functional.

    图 4  p型和n型单层TiZrCO2和VYCO2 Seebeck (a), (b)、电导率(c), (d)和功率因子(e), (f)随载流子浓度变化图

    Fig. 4.  Variations of monolayer TiZrCO2 and VYCO2 Seebeck (a), (b), conductivity (c), (d), and power factor (e), (f) with carrier concentration for p and n types.

    图 5  单层TiZrCO2和VYCO2 (a)及MoS2 (b)晶格热导率随温度变化图

    Fig. 5.  The lattice thermal conductivity of monolayer TiZrCO2, VYCO2 (a) and MoS2 (b) varies with temperature.

    图 6  不同温度下声学声子和光学声子对单层TiZrCO2 (a)和VYCO2 (b)总晶格热导率的贡献

    Fig. 6.  Contribution of acoustic phonons and optical phonons to the total lattice thermal conductivity of monolayer TiZrCO2 (a) and VYCO2 (b) at different temperatures.

    图 8  不同温度下单层TiZrCO2和VYCO2晶格热导率随频率(a)(c)和平均自由程MFP(b)(d)的变化规律

    Fig. 8.  The thermal conductivity of monolayer TiZrCO2 and VYCO2 lattice changes with frequency (a)(c) and mean free path MFP(b)(d) at different temperatures.

    图 7  300 K下单层TiZrCO2和VYCO2的声子速度 (a)(b)、声子寿命 (c)(d)和格林艾森常数 (e)(f)随频率的变化

    Fig. 7.  Phonon velocity (a)(b), phonon lifetime (c)(d), and Grüneisen parameter (e)(f) of monolayer TiZrCO2 and VYCO2 at 300 K with frequency.

    图 9  单层TiZrCO2 (a)和VYCO2 (b)热电优值随载流子浓度变化图

    Fig. 9.  The thermoelectric value of monolayer TiZrCO2 (a) and VYCO2 (b) varies with carrier concentration.

    表 1  单层TiZrCO2 和VYCO2的晶格常数a、弹性张量和带隙

    Table 1.  Lattice constants a, elastic tensors, and bandgaps of monolayer TiZrCO2 and VYCO2.

    a C11(C22)/(N·m–1) C12/(N·m–1) C66/(N·m–1) EPBE/eV EHSE06/eV
    TiZrCO2 3.19 247.64 87.88 0.01 0.74 1.50
    VYCO2 3.32 78.41 38.93 0.20 1.10 2.15
    下载: 导出CSV

    表 2  300 K下单层TiZrCO2 和VYCO2的形变势能E1、弹性常量C、有效质量$m^* $、弛豫时间τ (括号内数据为文献[35]的计算结果)

    Table 2.  Deformation potential energy E1, elastic constant C, effective mass $m^*$, relaxation time τ of monolayer TiZrCO2 and VYCO2 at 300 K (the data in brackets are the calculation results of Ref. [35]).

    Carrier type C/(J·m–2) E1/eV $m^*/m_{\rm e}$ τ/fs
    TiZrCO2 Electro 248 10.8 2.69 6.39
    Hole 248 2.7 0.75 366.56
    VYCO2 Electro 78 3.7 1.67 27.48
    Hole 78 4.81 0.94 28.96
    MoS2 Electro 168(166) 8.34(8.61) 0.46(0.44) 42.51(40.9)
    Hole 168 3.81 0.56 167.3
    下载: 导出CSV
  • [1]

    Zhang X, Zhao L D 2015 J. Materiomics 1 92Google Scholar

    [2]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105Google Scholar

    [3]

    He J, Tritt T M 2017 Science 357 eaak9997Google Scholar

    [4]

    Rana G, Gupta R, Bera C 2023 Appl. Phys. Lett. 122 063902Google Scholar

    [5]

    Xie W J, Tang X F, Yan Y G, Zhang Q J, Tritt T M 2009 Appl. Phys. Lett. 94 102111Google Scholar

    [6]

    Heremans J P, Jovovic V, Toberer E S, et al. 2008 Science 321 554Google Scholar

    [7]

    Joshi G, Lee H, Lan Y C, Wang X W, Zhu G H, Wang D Z, Gould R W, Cuff D C, Tang M Y, Dresselhaus M S, Chen G, Ren Z F 2008 Nano Lett. 8 4670Google Scholar

    [8]

    Chen X X, Wu H J, Cui J, Xiao Y, Zhang Y, He J Q, Chen Y, Cao J, Cai W, Pennycook S J, Liu Z H, Zhao L D, Sui J H 2018 Nano Energy 52 246Google Scholar

    [9]

    Ruleova P, Drasar C, Lostak P, Li C P, Ballikaya S, Uher C 2010 Mater. Chem. Phys. 119 299Google Scholar

    [10]

    Zhao L D, He J Q, Berardan D, Lin Y, Li J F, Nan C W, Dragoe N 2014 Energ. Environ. Sci. 7 2900Google Scholar

    [11]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [12]

    Ramanathan A A, Khalifeh J M 2018 IEEE Trans. Nanotechnol. 17 974Google Scholar

    [13]

    Li M L, Wang N, Jiang M, Xiao H Y, Zhang H B, Liu Z J, Zu X T, Qiao L 2019 J. Mater. Chem. C 7 11029Google Scholar

    [14]

    Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X 2017 Mater. Design 114 161Google Scholar

    [15]

    Khazaei M, Ranjbar A, Arai M, Yunoki S 2016 Phys. Rev. B 94 125152Google Scholar

    [16]

    王剑, 周榆力 2020 西华大学学报(自然科学版) 39 76Google Scholar

    Wang J, Zhou Y L 2020 J. Xihua Univ. (Natural Science Edition) 39 76Google Scholar

    [17]

    Kumar S, Schwingenschlögl U T 2016 Phys. Rev. B 94 035405Google Scholar

    [18]

    Gandi A N, Alshareef H N, Schwingenschlögl U 2016 Chem. Mater. 28 1647Google Scholar

    [19]

    Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R, Gogotsi Y, Barsoum M W 2015 Acs Nano 9 9507Google Scholar

    [20]

    Jing Z A, Wang H Y, Feng X H, Xiao B, Ding Y C, Wu K, Cheng Y H 2019 J. Phys. Chem. Lett. 10 5721Google Scholar

    [21]

    Kim H, Anasori B, Gogotsi Y, Alshareef H N 2017 Chem. Mater. 29 6472Google Scholar

    [22]

    Karmakar S, Saha-Dasgupta T 2020 Phys. Rev. Mater. 4 124007Google Scholar

    [23]

    Chang W L, Sun Z Q, Zhang Z M, Wei X P, Tao X 2023 J. Phys. Chem. Solids 176 111210Google Scholar

    [24]

    Xiong K W, Cheng Z Q, Liu J P, Liu P F, Zi Z F 2023 Rsc Adv. 13 7972Google Scholar

    [25]

    Kresse G, Furthmüller J 1996 Comp. Mater. Sci. 6 15Google Scholar

    [26]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [27]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [28]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [29]

    Madsen G K H, Carrete J, Verstraete M J 2018 Comput. Phys. Commun. 231 140Google Scholar

    [30]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [31]

    Zhang Y, Maginn E J 2012 J. Phys. Chem. B 116 10036Google Scholar

    [32]

    Togo A, Tanaka I 2015 Scripta Mater. 108 1Google Scholar

    [33]

    Li W, Carrete J, Katcho N A, Mingo N 2014 Comput. Phys. Commun. 185 1747Google Scholar

    [34]

    Born M, Huang K 1955 Am. J. Phys. 23 474Google Scholar

    [35]

    Ouyang B, Chen S D, Jing Y H, Wei T R, Xiong S Y, Donadio D 2018 J. Materiomics 4 329Google Scholar

    [36]

    Madsen G K H, Singh D J 2006 Comput. Phys. Commun. 175 67Google Scholar

    [37]

    Girotto N, Novko D 2023 Phys. Rev. B 107 064310Google Scholar

    [38]

    Xiang J, Ali R N, Yang Y, Zheng Z, Xiang B, Cui X 2019 Physica E 109 248Google Scholar

    [39]

    Sahoo S, Gaur A P, Ahmadi M, Guinel, M J F, Katiyar R S 2013 J. Phys. Chem. C. 117 9042Google Scholar

    [40]

    Wei X P, Shen J, Du L L, Chang W L, Tao X M 2022 Phys. Scripta 97 085706Google Scholar

    [41]

    Zha X H, Yin J, Zhou Y, Huang Q, Luo K, Lang J, Francisco J S, He J, Du S 2016 J. Phys. Chem. C 120 15082Google Scholar

    [42]

    Park T, Cho K, Kim S 2021 Adv. Mater. Technol. 6 2100590Google Scholar

    [43]

    Wu H, Gu J, Li Z, Liu W, Bao H, Lin H, Yue Y 2022 J. Phys. Condens. Matter. 34 155704Google Scholar

    [44]

    Wang L, Liu Q, Zhang Y B 2021 Chin. Phys. B 30 020506Google Scholar

    [45]

    董文欣, 李铁平, 张莉, 丁迎春, 何开华 2025 原子与分子物理学报 42 046007Google Scholar

    Dong W X, Li T P, Zhang L, Ding Y C, He K H 2025 J. At. Mol. Phys. 42 046007Google Scholar

    [46]

    Guo Z L, Miao N H, Zhou J, Pan Y C, Sun Z M 2018 Phys. Chem. Chem. Phy. 20 19689Google Scholar

    [47]

    刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑 2023 化工学报 74 3968Google Scholar

    Liu C Y, Guan B, Zhong J B, Xu Y F, Jiang X H, Li D 2023 CIESC J. 74 3968Google Scholar

    [48]

    Pang G J, Zhang B, Meng F C, Liu Z, Chen Y, Li W 2023 Phys. Rev. B 108 054303Google Scholar

    [49]

    Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar

  • [1] 李环娅, 周柯, 尹万健. 材料的非简谐性描述符. 物理学报, 2024, 73(5): 057101. doi: 10.7498/aps.73.20231428
    [2] 余跃, 杨恒玉, 周五星, 欧阳滔, 谢国锋. 第一性原理研究单层Ge2X4S2 (X = P, As)的热电性能. 物理学报, 2023, 72(7): 077201. doi: 10.7498/aps.72.20222244
    [3] 王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东. 具有本征低晶格热导率的硫化银快离子导体的热电性能. 物理学报, 2019, 68(9): 090201. doi: 10.7498/aps.68.20190073
    [4] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比. 物理学报, 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [5] 饶雪, 王如志, 曹觉先, 严辉. 掺杂GaN/AlN超晶格第一性原理计算研究. 物理学报, 2015, 64(10): 107303. doi: 10.7498/aps.64.107303
    [6] 朱岩, 张新宇, 张素红, 马明臻, 刘日平, 田宏燕. Mg2Si化合物在静水压下的电子输运性能研究. 物理学报, 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [7] 王江舵, 代建清, 宋玉敏, 张虎, 牛之慧. BaTiO3/SrTiO3(1:1)超晶格的晶格动力学、介电和压电性能的第一性原理研究. 物理学报, 2014, 63(12): 126301. doi: 10.7498/aps.63.126301
    [8] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算. 物理学报, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [9] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [10] 代云雅, 杨莉, 彭述明, 龙兴贵, 周晓松, 祖小涛. 金属氢化物力学性能的第一性原理研究. 物理学报, 2012, 61(10): 108801. doi: 10.7498/aps.61.108801
    [11] 曹卫强, 鄢永高, 唐新峰. Yb/Sr双原子复合填充的I-型YbxSr8-xGa16Ge30笼合物的合成及热电性能. 物理学报, 2010, 59(1): 630-635. doi: 10.7498/aps.59.630
    [12] 张轶群, 施 毅, 濮 林, 张 荣, 郑有炓. 纳米线阵列横向输运的热电特性研究. 物理学报, 2008, 57(8): 5198-5204. doi: 10.7498/aps.57.5198
    [13] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [14] 罗派峰, 唐新峰, 熊 聪, 张清杰. 多壁碳纳米管对p型Ba0.3FeCo3Sb12化合物热电性能的影响. 物理学报, 2005, 54(5): 2403-2408. doi: 10.7498/aps.54.2403
    [15] 李 涵, 唐新峰, 刘桃香, 宋 晨, 张清杰. Ca和Ce双原子复合填充p型CamCenFexCo4-xSb12化合物的合成及热电性能. 物理学报, 2005, 54(11): 5481-5486. doi: 10.7498/aps.54.5481
    [16] 潘志军, 张澜庭, 吴建生. 掺杂半导体β-FeSi2电子结构及几何结构第一性原理研究. 物理学报, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [17] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
    [18] 罗派峰, 唐新峰, 李 涵, 刘桃香. Ba和Ce两种原子复合填充BamCenFeCo3Sb12化合物的合成及热电性能. 物理学报, 2004, 53(9): 3234-3238. doi: 10.7498/aps.53.3234
    [19] 唐新峰, 陈立东, 後藤孝, 平井敏雄, 袁润章. p型BayFexCo4-xSb12化合物的热电性能. 物理学报, 2001, 50(8): 1560-1566. doi: 10.7498/aps.50.1560
    [20] 唐新峰, 陈立东, 後藤 孝, 平井 敏雄, 袁润章. Ce填充分数对p型CeyFe1.5Co2.5Sb12化合 物热电传输特性的影响. 物理学报, 2000, 49(12): 2460-2465. doi: 10.7498/aps.49.2460
计量
  • 文章访问数:  2080
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-26
  • 修回日期:  2024-05-03
  • 上网日期:  2024-05-30
  • 刊出日期:  2024-07-20

/

返回文章
返回