搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构相变引起单层RuSe2载流子迁移率的提高

陆康俊 王一帆 夏谦 张贵涛 陈乾

引用本文:
Citation:

结构相变引起单层RuSe2载流子迁移率的提高

陆康俊, 王一帆, 夏谦, 张贵涛, 陈乾

Promoted Carrier Mobility in Monolayer RuSe2 Induced by Structural Phase Transition

Lu Kang-Jun, Wang Yi-Fan, Xia Qian, Zhang Gui-Tao, Chen Qian
PDF
HTML
导出引用
  • 过渡金属二硫族化合物(TMDs)是二维材料家族中的重要成员, 具有丰富多样的晶体结构和物理特性, 是近年来在科学研究和器件应用领域关注度较高的材料之一. 本文通过第一性原理计算研究了单层RuSe2的结构和相变, 在确定其基态为二聚相($T^\prime$ 相)的同时, 发现该材料存在能量相近的三聚相($T^{\prime\prime\prime}$相). 我们分别从动力学和热力学角度预测了该晶相结构的稳定性. 结合相变势垒的计算和分子动力学模拟, 我们预测在室温下对$T^\prime$相结构施加较小的应力就可以实现晶格从$T^\prime$相到$T^{\prime\prime\prime}$相的转变. 相变后的能带结构以及载流子迁移率都发生了明显的改变, 其带隙由1.11 eV的间接带隙转变为0.71 eV的直接带隙, 载流子迁移率有了大幅的提升, 空穴迁移率达到了$3.22 \times 10^3 \, {\rm cm}^{2}\cdot{\rm V}^{-1}\cdot{\rm s}^{-1}$. 我们的工作对比研究了RuSe2单层中可能共存的两种畸变相, 分析了不同晶相的电子结构和迁移率, 为实验上研究二维RuSe2材料及其在未来器件中的应用提供了理论依据.
    Transition metal dichalcogenides (TMDs) represent an important family of two-dimensional materials with diverse crystal structures and physical properties, offering a broad platform for scientific research and device applications. The diversity of TMDs' properties arises not only from their relatively large family but also from the variety of their crystal structure phases. The most common structures of TMDs are the trigonal prismatic phase (H phase) and the octahedral phase (T phase). Studies have shown that, in addition to these two high-symmetry phases, TMDs also have other distorted phases. Distorted phases often exhibit different physical properties from symmetric phases and can perform better in certain systems. Given the structural differences between different distorted phases can sometimes be very small, it is experimentally challenging to observe the coexistence of multiple distorted phases. Therefore, it is meaningful to theoretically explore the structural stability and physical properties of different distorted phases. In this study, we investigate the structure and phase transition of monolayer RuSe2 through first-principles calculation. While confirming its ground state as the dimerized phase ($T^\prime$ phase), we identify the existence of another energetically competitive trimerized phase ($T^{\prime\prime\prime}$ phase). By comparing the energies of four different structures and combining the results of phonon spectra and molecular dynamics simulations, we predicted the stability of the $T^{\prime\prime\prime}$ phase at room temperature. Given that the H and T phases of two-dimensional RuSe2 have already been observed experimentally, and considering that the energy of the $T^{\prime\prime\prime}$ phase is much lower than that of the H and T phases, it is highly likely that the $T^{\prime\prime\prime}$ phase exists in experiment. Combined with calculations of the phase transition barrier and molecular dynamics simulations, we anticipate that applying slight stress to the $T^\prime$ phase structure at room temperature can induce a lattice transition from $T^\prime$ to $T^{\prime\prime\prime}$ phase. This phase transition results in significant changes in the band structure and carrier mobility, with the bandgap changing from an indirect bandgap of 1.11 eV to a direct bandgap of 0.71 eV, and the carrier mobility in the armchair direction increasing from $ 0.82 \times 10^3 \, {\rm cm}^{2}\cdot{\rm V}^{-1}\cdot{\rm s}^{-1}$ to $3.22 \times 10^3 \, {\rm cm}^{2}\cdot{\rm V}^{-1}\cdot{\rm s}^{-1}$, an approximately threefold enhancement. Our work contrasts and investigates two possible coexisting distorted phases in monolayer RuSe2, analyzing their electronic structures and carrier mobilities, thereby facilitating experimental investigations of two-dimensional RuSe2 materials and their applications in future electronic devices.
  • 图 1  (a) 单层RuSe2四种结构的相对能量, 以图中矩形超胞的长度作为横坐标进行排列. 绿球代表Ru原子, 红球代表Se原子; (b) RuSe2的$ T^\prime $相晶体结构; (c) RuSe2的$ T^{\prime\prime\prime} $相晶体结构.

    Fig. 1.  (a) The relative energies of four structures of monolayer RuSe2, arranged along the lengths of rectangular supercells. Green spheres represent Ru atoms, while red spheres represent Se atoms; (b) Crystal structure of RuSe2 in the $ T^\prime $ phase; (c) Crystal structure of RuSe2 in the $ T^{\prime\prime\prime} $ phase.

    图 2  (a) AIMD模拟300 K时$ T^{\prime\prime\prime} $相单层RuSe2总能量随时间的变化, 插图为始末状态的晶体结构图; (b) $ T^{\prime\prime\prime} $相单层RuSe2的声子谱.

    Fig. 2.  (a) Variation of the total energy of monolayer RuSe2 in the $ T^{\prime\prime\prime} $ phase during AIMD simulation at 300 K. The crystal structures of the initial and final states shown in the inset; (b) Phonon spectrum of monolayer RuSe2 in the $ T^{\prime\prime\prime} $ phase.

    图 3  (a) 单层RuSe2在$ T^\prime $相的能带结构; (b) 单层RuSe2 在$ T^{\prime\prime\prime} $相的能带结构; (c) $ T^\prime $相中的Ru-Se八面体结构; (d) $ T^{\prime\prime\prime} $相中的Ru-Se八面体结构; (e) Ru-Se 八面体的Ru-d轨道在不同晶相结构中的分裂情况示意图.

    Fig. 3.  (a) Band structure of monolayer RuSe2 in the $ T^\prime $ phase; (b) Band structure of monolayer RuSe2 in the $ T^{\prime\prime\prime} $ phase; (c) Octahedral structure of Ru-Se in the $ T^\prime $ phase; (d) Octahedral structure of Ru-Se in the $ T^{\prime\prime\prime} $ phase; (e) Schematic illustration of the splitting of Ru-d orbitals in the Ru-Se octahedron in different crystal phases.

    图 4  (a) 单层RuSe2在$ T^\prime $与$ T^{\prime\prime\prime} $相下能量随zigzag方向晶格长度变化的关系曲线, 插图为部分位置处发生相变的NEB势垒图; (b) 300 K, 下$ T^\prime $ 相在Zigzag方向施加6.5%压缩应变时的分子动力学模拟, 其中的插图分别是0 ps 和15 ps的结构图

    Fig. 4.  (a) The energy of monolayer RuSe2 in the $ T^\prime $ and $ T^{\prime\prime\prime} $ phases variation with the lattice along the zigzag direction. The insets are the NEB barriers showing phase transitions at certain positions; (b) AIMD of the $ T^\prime $ phase under 6.5% compressive strain along the zigzag direction at 300 K, with insets showing crystal structures at 0 ps and 15 ps.

    表 1  计算得到的单层RuSe2在armchair和zigzag方向上的载流子有效质量$ m^*\left(\text{m}_{0}\right) $, $ m_0 $为单个电子的质量; 弹性模量$C\;\left( {\rm N}\cdot{\rm m}^{-1}\right) $; 形变势$ E_1 \;\text{eV} $和迁移率$ \mathit{µ}\;\left({\rm cm}^{2}\cdot{\rm V}^{-1}\cdot{\rm s}^{-1}\right) $.

    Table 1.  Calculated effective mass of carriers $ m^*\left(\text{m}_{0}\right) $, here the $ {m}_{0} $ represents the mass of a single electron; elastic modulus $ C\;\left({\rm N}\cdot{\rm m}^{-1}\right) $; deformation potential $ E_1 \; \left(\text{eV}\right)$; and mobility $\mathit{µ}\; \left({\rm cm}^{2}\cdot{\rm V}^{-1}\cdot{\rm s}^{-1}\right)$ of monolayer RuSe2 in the armchair and zigzag directions.

    Phase/Carrier $ m^*_{arm} $ $ m^*_{zig} $ $ C_{11} $ $ C_{22} $ $ E_{1 arm} $ $ E_{1 zig} $ $ \mu_{\rm arm} $ $ \mu_{\rm zig} $
    $ {m}_{0} $ ($ {\rm N}\cdot{\rm m}^{-1} $) (eV) $ \left({\rm cm}^{2}\cdot{\rm V}^{-1}\cdot{\rm s}^{-1}\right) $
    $ T^\prime \text{/e}$ 37.59 9.64 95.73 92.01 0.74 –2.87 2.44 3.53
    $ T^\prime \text{/h}$ 3.21 1.22 1.46 –0.71 224.42 823.25
    $ T^{\prime\prime\prime}\text{/e} $ 3.48 1.16 97.80 99.31 –1.46 –2.98 70.53 150.57
    $ T^{\prime\prime\prime} \text{/h}$ 1.10 0.60 1.78 0.50 1182.65 3219.20
    下载: 导出CSV
  • [1]

    Pinilla S, Coelho J, Li K, Liu J, Nicolosi V 2022 Nat. Rev. Mater. 7 717Google Scholar

    [2]

    Wan S J, Li X, Chen Y, Liu N N, Du Y, Dou S X, Jiang L, Cheng Q F 2021 Science 374 96Google Scholar

    [3]

    Jiang Y C, He A P, Zhao R, Chen Y, Liu G Z, Lu H, Zhang J L, Zhang Q, Wang Z, Zhao C, Long M S, Hu W D, Wang L, Qi Y P, Gao J, Wu Q Y, Ge X T, Ning J Q, Wee A T S, Qiu C W 2021 Phys. Rev. Lett. 127 217401Google Scholar

    [4]

    Zhu B R, Xiao K, Yang S Y, Watanabe K, Taniguchi T, Cui X D 2023 Phys. Rev. Lett. 131 036901Google Scholar

    [5]

    Liu X G, Pyatakov A P, Ren W 2020 Phys. Rev. Lett. 125 247601Google Scholar

    [6]

    Liu X E, Yang Y L, Hu T, Zhao G D, Chen C, Ren W 2019 Nanoscale 11 18575Google Scholar

    [7]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [8]

    de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427Google Scholar

    [9]

    Liu Y, Duan X D, Shin H J, Park S, Huang Y, Duan X F 2021 Nature 591 43Google Scholar

    [10]

    Wang S, ur Rehman Z, Liu Z F, Li T R, Li Y L, Wu Y B, Zhu H G, Cui S T, Liu Y, Zhang G B 2022 Chin. Phys. Lett. 39 077102Google Scholar

    [11]

    郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波 2022 物理学报 71 240

    Hao G Q, Zhang R, Zhang W J, Chen N, Ye X J, Li H B 2022 Acta Phys. Sin. 71 240

    [12]

    邓霖湄, 司君山, 吴绪才, 张卫兵 2022 物理学报 71 147101Google Scholar

    Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101Google Scholar

    [13]

    Zhao W, Pan J, Fang Y, Che X, Wang D, Bu K, Huang F 2018 Chem.-Eur. J. 24 15942Google Scholar

    [14]

    Duerloo K A, Li Y, Reed E J 2014 Nat. Commun. 5 4214Google Scholar

    [15]

    Duvjir G, Choi B K, Ly T T, Lam N H, Chun S H, Jang K, Soon A, Chang Y J, Kim J 2019 Nanoscale 11 20096Google Scholar

    [16]

    Sun Y F, Wang Y X, Sun D, Carvalho B R, Read C G, Lee C H, Lin Z, Fujisawa K, Robinson J A, Crespi V H, Terrones M, Schaak R E 2016 Angew. Chem.-Int. Edit. 55 2830Google Scholar

    [17]

    Liu Z Q, Li N, Su C, Zhao H Y, Xu L L, Yin Z Y, Li J, Du Y P 2018 Nano Energy 50 176Google Scholar

    [18]

    Kar I, Dolui K, Harnagea L, Kushnirenko Y, Shipunov G, Plumb N C, Shi M, Büchner B, Thirupathaiah S 2021 J. Phys. Chem. C 125 1150Google Scholar

    [19]

    Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar

    [20]

    Niehues I, Deilmann T, Kutrowska-Girzycka J, Taghizadeh A, Bryja L, Wurstbauer U, Bratschitsch R, Jadczak J 2022 Phys. Rev. B 105 205432Google Scholar

    [21]

    Fang Y, Hu X, Zhao W, Pan J, Wang D, Bu K, Mao Y, Chu S, Liu P, Zhai T, Huang F 2019 J. Am. Chem. Soc. 141 790Google Scholar

    [22]

    Lipatov A, Chaudhary P, Guan Z, Lu H, Li G, Crégut O, Dorkenoo K D, Proksch R, Cherifi-Hertel S, Shao D F, Tsymbal E Y, Íñiguez J, Sinitskii A, Gruverman A 2022 npj 2 D Mater. Appl. 6 18Google Scholar

    [23]

    Liu L, Chen S S, Lin Z Z, Zhang X 2020 J. Phys. Chem. Lett. 11 7893Google Scholar

    [24]

    Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A 2015 J. Phys. Chem. C 119 13124Google Scholar

    [25]

    Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L, Song B 2021 Adv. Mater. 33 e1907818Google Scholar

    [26]

    Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J, Lee Y H 2015 Nat. Phys. 11 482Google Scholar

    [27]

    Lai Z C, He Q Y, Ha Tran T, Repaka D V M, Zhou D D, Sun Y, Xi S B, Li Y X, Chaturvedi A, Tan C L, Chen B, Nam G H, Li B, Ling C Y, Zhai W, Shi Z Y, Hu D Y, Sharma V, Hu Z N, Chen Y, Zhang Z C, Yu Y F, Wang X R, Ramanujan R V, Ma Y M, Hippalgaonkar K, Zhang H 2021 Nat. Mater. 20 1113Google Scholar

    [28]

    Song M S, Shi Q, Kan D X, Wei S R, Xu F M, Huo W T, Chen K Y 2023 Appl. Surf. Sci. 612 155761Google Scholar

    [29]

    Tanimura H, Okamoto N L, Homma T, Sato Y, Ishii A, Takamura H, Ichitsubo T 2022 Phys. Rev. B 105 245402Google Scholar

    [30]

    Kiem D, Jeong M Y, Yoon H, Han M J 2022 Nanoscale 14 10009Google Scholar

    [31]

    Chen K, Deng J, Kan D, Yan Y, Shi Q, Huo W, Song M, Yang S, Liu J Z 2022 Phys. Rev. B 105 024414Google Scholar

    [32]

    Zhang M G, Chen L F, Feng L, Tuo H H, Zhang Y, Wei Q, Li P F 2023 Chin. Phys. B 32 086101Google Scholar

    [33]

    Zhao Y, Cong H, Li P, Wu D, Chen S, Luo W 2021 Angew. Chem.-Int. Edit. 60 7013Google Scholar

    [34]

    Ersan F, Cahangirov S, Gökoglu G, Rubio A, Aktürk E 2016 Phys. Rev. B 94 155415Google Scholar

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [36]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [37]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [38]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [39]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [40]

    Cococcioni M, de Gironcoli S 2005 Phys. Rev. B 71 035105Google Scholar

    [41]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [42]

    Bucher D, Pierce L C T, McCammon J A, Markwick P R L 2011 J. Chem. Theory Comput. 7 890Google Scholar

    [43]

    Lang H F, Zhang S Q, Liu Z R 2016 Phys. Rev. B 94 235306Google Scholar

    [44]

    Abdullahi Y Z, Ahmad S 2021 Phys. Chem. Chem. Phys. 23 16316Google Scholar

    [45]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U. S. A. 112 2372Google Scholar

    [46]

    Zhang G T, Lu K J, Wang Y F, Wang H W, Chen Q 2022 Phys. Rev. B 105 235303Google Scholar

    [47]

    Lang H F, Zhang S Q, Liu Z R 2016 Phys. Rev. B 94 235306Google Scholar

    [48]

    Wang Y T, Tang X H, Zhou Q H, Chen X Y, Chen Q, Xu Y H 2020 Phys. Rev. B 102 165428Google Scholar

    [49]

    Zhou Q H, Chen Q, Tong Y L, Wang J L 2016 Angew. Chem.-Int. Edit. 55 11437Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.73.20231436
    [2] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, doi: 10.7498/aps.70.20201636
    [3] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20201939
    [4] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, doi: 10.7498/aps.70.20211015
    [5] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, doi: 10.7498/aps.68.20191258
    [6] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, doi: 10.7498/aps.68.20182128
    [7] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, doi: 10.7498/aps.65.237101
    [8] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, doi: 10.7498/aps.63.186401
    [9] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, doi: 10.7498/aps.61.036105
    [10] 顾牡, 林玲, 刘波, 刘小林, 黄世明, 倪晨. M’型GdTaO4电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.59.2836
    [11] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.2051
    [12] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.515
    [13] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.59.3414
    [14] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.57.2368
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.7794
    [16] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, doi: 10.7498/aps.57.4428
    [17] 孙 博, 刘绍军, 段素青, 祝文军. Fe的结构与物性及其压力效应的第一性原理计算. 物理学报, doi: 10.7498/aps.56.1598
    [18] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, doi: 10.7498/aps.56.4817
    [19] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, doi: 10.7498/aps.55.2877
    [20] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, doi: 10.7498/aps.55.5172
计量
  • 文章访问数:  163
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-06-06

/

返回文章
返回