-
过渡金属二硫族化合物(TMDs)是二维材料家族中的重要成员, 具有丰富多样的晶体结构和物理特性, 是近年来在科学研究和器件应用领域关注度较高的材料之一. 本文通过第一性原理计算研究了单层RuSe2的结构和相变, 在确定其基态为二聚相(
$T^\prime$ 相)的同时, 发现该材料存在能量相近的三聚相($T^{\prime\prime\prime}$ 相). 分别从动力学和热力学角度预测了该晶相结构的稳定性. 结合相变势垒的计算和分子动力学模拟, 预测在室温下对$T^\prime$ 相结构施加较小的应力就可以实现晶格从$T^\prime$ 相到$T^{\prime\prime\prime}$ 相的转变. 相变后的能带结构以及载流子迁移率都发生了明显的改变, 其带隙由1.11 eV的间接带隙转变为0.71 eV的直接带隙, 载流子迁移率有了大幅的提升, 空穴迁移率达到了$3.22 \times 10^3 \, {\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}$ . 本文对比研究了RuSe2单层中可能共存的两种畸变相, 分析了不同晶相的电子结构和迁移率, 为实验上研究二维RuSe2材料及其在未来器件中的应用提供了理论依据.Transition metal dichalcogenides (TMDs) is an important member of two-dimensional material family, which has various crystal structures and physical properties, thus providing a broad platform for scientific research and device applications. The diversity of TMD's properties arises not only from their relatively large family but also from the variety of their crystal structure phases. The most common structure of TMD is the trigonal prismatic phase (H phase) and the octahedral phase (T phase). Studies have shown that, in addition to these two high-symmetry phases, TMD has other distorted phases. Distorted phase often exhibits different physical properties from symmetric phases and can perform better in certain systems. Because the structural differences between different distorted phases are sometimes very small, it is experimentally challenging to observe multiple distorted phases coexisting. Therefore, it is meaningful to theoretically investigate the structural stability and physical properties of different distorted phases. In this study, we investigate the structure and phase transition of monolayer RuSe2 through first-principles calculation. While confirming that its ground state is a the dimerized phase ($T^\prime$ phase), we find the presence of another energetically competitive trimerized phase ($T^{\prime\prime\prime}$ phase). By comparing the energy values of four different structures and combining the results of phonon spectra and molecular dynamics simulations, we predict the stability of the$T^{\prime\prime\prime}$ phase at room temperature. Because the H phase and T phase of two-dimensional RuSe2 have already been observed experimentally, and considering the fact that$T^{\prime\prime\prime}$ phase has much lower energy than the H and T phases, it is highly likely that the$T^{\prime\prime\prime}$ phase exists in experiment. Combining the calculations of the phase transition barrier and the molecular dynamics simulations, we anticipate that applying a slight stress to the$T^\prime$ phase structure at room temperature can induce a lattice transition from$T^\prime$ phase to$T^{\prime\prime\prime}$ phase, resulting in significant changes in the band structure and carrier mobility, with the bandgap changing from an indirect bandgap of 1.11 eV to a direct bandgap of 0.71 eV, and the carrier mobility in the armchair direction increasing from$ 0.82 \times $ $ 10^3 \, {\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}$ to$3.22 \times 10^3 \, {\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}$ , an approximately threefold enhancement. In this work, two possible coexisting distorted phases in monolayer RuSe2 are compared with each other and studied, and their electronic structures and carrier mobilities are analyzed, thereby facilitating experimental research on two-dimensional RuSe2 materials and their applications in future electronic devices.-
Keywords:
- RuSe2 /
- phase transition /
- carrier mobility /
- first-principles calculation
[1] Pinilla S, Coelho J, Li K, Liu J, Nicolosi V 2022 Nat. Rev. Mater. 7 717Google Scholar
[2] Wan S J, Li X, Chen Y, Liu N N, Du Y, Dou S X, Jiang L, Cheng Q F 2021 Science 374 96Google Scholar
[3] Jiang Y C, He A P, Zhao R, Chen Y, Liu G Z, Lu H, Zhang J L, Zhang Q, Wang Z, Zhao C, Long M S, Hu W D, Wang L, Qi Y P, Gao J, Wu Q Y, Ge X T, Ning J Q, Wee A T S, Qiu C W 2021 Phys. Rev. Lett. 127 217401Google Scholar
[4] Zhu B R, Xiao K, Yang S Y, Watanabe K, Taniguchi T, Cui X D 2023 Phys. Rev. Lett. 131 036901Google Scholar
[5] Liu X G, Pyatakov A P, Ren W 2020 Phys. Rev. Lett. 125 247601Google Scholar
[6] Liu X E, Yang Y L, Hu T, Zhao G D, Chen C, Ren W 2019 Nanoscale 11 18575Google Scholar
[7] Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar
[8] de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427Google Scholar
[9] Liu Y, Duan X D, Shin H J, Park S, Huang Y, Duan X F 2021 Nature 591 43Google Scholar
[10] Wang S, ur Rehman Z, Liu Z F, Li T R, Li Y L, Wu Y B, Zhu H G, Cui S T, Liu Y, Zhang G B 2022 Chin. Phys. Lett. 39 077102Google Scholar
[11] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波 2022 物理学报 71 240Google Scholar
Hao G Q, Zhang R, Zhang W J, Chen N, Ye X J, Li H B 2022 Acta Phys. Sin. 71 240Google Scholar
[12] 邓霖湄, 司君山, 吴绪才, 张卫兵 2022 物理学报 71 147101Google Scholar
Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101Google Scholar
[13] Zhao W, Pan J, Fang Y, Che X, Wang D, Bu K, Huang F 2018 Chem. Eur. J. 24 15942Google Scholar
[14] Duerloo K A, Li Y, Reed E J 2014 Nat. Commun. 5 4214Google Scholar
[15] Duvjir G, Choi B K, Ly T T, Lam N H, Chun S H, Jang K, Soon A, Chang Y J, Kim J 2019 Nanoscale 11 20096Google Scholar
[16] Sun Y F, Wang Y X, Sun D, Carvalho B R, Read C G, Lee C H, Lin Z, Fujisawa K, Robinson J A, Crespi V H, Terrones M, Schaak R E 2016 Angew. Chem. Int. Ed. 55 2830Google Scholar
[17] Liu Z Q, Li N, Su C, Zhao H Y, Xu L L, Yin Z Y, Li J, Du Y P 2018 Nano Energy 50 176Google Scholar
[18] Kar I, Dolui K, Harnagea L, Kushnirenko Y, Shipunov G, Plumb N C, Shi M, Büchner B, Thirupathaiah S 2021 J. Phys. Chem. C 125 1150Google Scholar
[19] Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar
[20] Niehues I, Deilmann T, Kutrowska-Girzycka J, Taghizadeh A, Bryja L, Wurstbauer U, Bratschitsch R, Jadczak J 2022 Phys. Rev. B 105 205432Google Scholar
[21] Fang Y, Hu X, Zhao W, Pan J, Wang D, Bu K, Mao Y, Chu S, Liu P, Zhai T, Huang F 2019 J. Am. Chem. Soc. 141 790Google Scholar
[22] Lipatov A, Chaudhary P, Guan Z, Lu H, Li G, Crégut O, Dorkenoo K D, Proksch R, Cherifi-Hertel S, Shao D F, Tsymbal E Y, Íñiguez J, Sinitskii A, Gruverman A 2022 npj 2D Mater. Appl. 6 18Google Scholar
[23] Liu L, Chen S S, Lin Z Z, Zhang X 2020 J. Phys. Chem. Lett. 11 7893Google Scholar
[24] Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A 2015 J. Phys. Chem. C 119 13124Google Scholar
[25] Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L, Song B 2021 Adv. Mater. 33 e1907818Google Scholar
[26] Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J, Lee Y H 2015 Nat. Phys. 11 482Google Scholar
[27] Lai Z C, He Q Y, Ha Tran T, Repaka D V M, Zhou D D, Sun Y, Xi S B, Li Y X, Chaturvedi A, Tan C L, Chen B, Nam G H, Li B, Ling C Y, Zhai W, Shi Z Y, Hu D Y, Sharma V, Hu Z N, Chen Y, Zhang Z C, Yu Y F, Wang X R, Ramanujan R V, Ma Y M, Hippalgaonkar K, Zhang H 2021 Nat. Mater. 20 1113Google Scholar
[28] Song M S, Shi Q, Kan D X, Wei S R, Xu F M, Huo W T, Chen K Y 2023 Appl. Surf. Sci. 612 155761Google Scholar
[29] Tanimura H, Okamoto N L, Homma T, Sato Y, Ishii A, Takamura H, Ichitsubo T 2022 Phys. Rev. B 105 245402Google Scholar
[30] Kiem D, Jeong M Y, Yoon H, Han M J 2022 Nanoscale 14 10009Google Scholar
[31] Chen K, Deng J, Kan D, Yan Y, Shi Q, Huo W, Song M, Yang S, Liu J Z 2022 Phys. Rev. B 105 024414Google Scholar
[32] Zhang M G, Chen L F, Feng L, Tuo H H, Zhang Y, Wei Q, Li P F 2023 Chin. Phys. B 32 086101Google Scholar
[33] Zhao Y, Cong H, Li P, Wu D, Chen S, Luo W 2021 Angew. Chem. Int. Ed. 60 7013Google Scholar
[34] Ersan F, Cahangirov S, Gökoglu G, Rubio A, Aktürk E 2016 Phys. Rev. B 94 155415Google Scholar
[35] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[36] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar
[37] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar
[38] Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar
[39] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[40] Cococcioni M, de Gironcoli S 2005 Phys. Rev. B 71 035105Google Scholar
[41] Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar
[42] Bucher D, Pierce L C T, McCammon J A, Markwick P R L 2011 J. Chem. Theory Comput. 7 890Google Scholar
[43] Lang H F, Zhang S Q, Liu Z R 2016 Phys. Rev. B 94 235306Google Scholar
[44] Abdullahi Y Z, Ahmad S 2021 Phys. Chem. Chem. Phys. 23 16316Google Scholar
[45] Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 2372Google Scholar
[46] Zhang G T, Lu K J, Wang Y F, Wang H W, Chen Q 2022 Phys. Rev. B 105 235303Google Scholar
[47] Wang Y T, Tang X H, Zhou Q H, Chen X Y, Chen Q, Xu Y H 2020 Phys. Rev. B 102 165428Google Scholar
[48] Zhou Q H, Chen Q, Tong Y L, Wang J L 2016 Angew. Chem. Int. Ed. 55 11437Google Scholar
-
图 1 (a) 单层RuSe2 4种结构的相对能量, 以图中矩形超胞的长度作为横坐标进行排列, 绿球代表Ru原子, 红球代表Se原子; (b) RuSe2的$ T^\prime $相晶体结构; (c) RuSe2的$ T^{\prime\prime\prime} $相晶体结构
Fig. 1. (a) The relative energies of four structures of monolayer RuSe2, arranged along the lengths of rectangular supercells, green spheres represent Ru atoms, while red spheres represent Se atoms; (b) crystal structure of RuSe2 in the $ T^\prime $ phase; (c) crystal structure of RuSe2 in the $ T^{\prime\prime\prime} $ phase.
图 2 (a) AIMD模拟300 K时$ T^{\prime\prime\prime} $相单层RuSe2总能量随时间的变化, 插图为始末状态的晶体结构图; (b) $ T^{\prime\prime\prime} $相单层RuSe2的声子谱
Fig. 2. (a) Variation of the total energy of monolayer RuSe2 in the $ T^{\prime\prime\prime} $ phase during AIMD simulation at 300 K. The crystal structures of the initial and final states shown in the inset; (b) phonon spectrum of monolayer RuSe2 in the $ T^{\prime\prime\prime} $ phase.
图 3 (a) 单层RuSe2在$ T^\prime $相的能带结构; (b) 单层RuSe2 在$ T^{\prime\prime\prime} $相的能带结构; (c) $ T^\prime $相中的Ru-Se八面体结构; (d) $ T^{\prime\prime\prime} $相中的Ru-Se八面体结构; (e) Ru-Se 八面体的Ru-d轨道在不同晶相结构中的分裂情况示意图
Fig. 3. (a) Band structure of monolayer RuSe2 in the $ T^\prime $ phase; (b) band structure of monolayer RuSe2 in the $ T^{\prime\prime\prime} $ phase; (c) octahedral structure of Ru-Se in the $ T^\prime $ phase; (d) octahedral structure of Ru-Se in the $ T^{\prime\prime\prime} $ phase; (e) schematic illustration of the splitting of Ru-d orbitals in the Ru-Se octahedron in different crystal phases.
图 4 (a) 单层RuSe2在$ T^\prime $与$ T^{\prime\prime\prime} $相下能量随zigzag方向晶格长度变化的关系曲线, 插图为部分位置处发生相变的NEB势垒图; (b) 300 K下, $ T^\prime $ 相在zigzag方向施加6.5%压缩应变时的分子动力学模拟, 其中的插图分别是0和15 ps的结构图
Fig. 4. (a) The energy of monolayer RuSe2 in the $ T^\prime $ and $ T^{\prime\prime\prime} $ phases variation with the lattice along the zigzag direction. The insets are the NEB barriers showing phase transitions at certain positions; (b) AIMD of the $ T^\prime $ phase under 6.5% compressive strain along the zigzag direction at 300 K, with insets showing crystal structures at 0 and 15 ps.
表 1 计算得到的单层RuSe2在armchair和zigzag方向上的载流子有效质量$ m^*\left({m}_{0}\right) $, $ {{m}}_0 $为单个电子的质量; 弹性模量$C\;\left( {\rm N}{\cdot}{\rm m}^{-1}\right) $; 形变势$ E_1 \;(\text{eV}) $和迁移率$ \mathit{µ}\;\left({\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}\right) $.
Table 1. Calculated effective mass of carriers $ m^*\left({m}_{0}\right) $, here the $ {m}_{0} $ represents the mass of a single electron; elastic modulus $ C\;\left({\rm N}{\cdot}{\rm m}^{-1}\right) $; deformation potential $ E_1 \; \left(\text{eV}\right)$; and mobility $\mathit{µ}\; \left({\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}\right)$ of monolayer RuSe2 in the armchair and zigzag directions.
Phase/Carrier $ m^*_{{\mathrm{arm}}} $ $ m^*_{{\mathrm{zig}}} $ $ C_{11} $ $ C_{22} $ $ E_{1 {\mathrm{arm}}} $ $ E_{1 {\mathrm{zig}}} $ $ \mu_{\rm arm} $ $ \mu_{\rm zig} $ $ {m}_{0} $ $ /({\rm N}{\cdot}{\rm m}^{-1}) $ /eV $ /\left({\rm cm}^{2}{\cdot}{\rm V}^{-1}{\cdot}{\rm s}^{-1}\right) $ $ T^\prime \text{/e}$ 37.59 9.64 95.73 92.01 0.74 –2.87 2.44 3.53 $ T^\prime \text{/h}$ 3.21 1.22 1.46 –0.71 224.42 823.25 $ T^{\prime\prime\prime}\text{/e} $ 3.48 1.16 97.80 99.31 –1.46 –2.98 70.53 150.57 $ T^{\prime\prime\prime} \text{/h}$ 1.10 0.60 1.78 0.50 1182.65 3219.20 -
[1] Pinilla S, Coelho J, Li K, Liu J, Nicolosi V 2022 Nat. Rev. Mater. 7 717Google Scholar
[2] Wan S J, Li X, Chen Y, Liu N N, Du Y, Dou S X, Jiang L, Cheng Q F 2021 Science 374 96Google Scholar
[3] Jiang Y C, He A P, Zhao R, Chen Y, Liu G Z, Lu H, Zhang J L, Zhang Q, Wang Z, Zhao C, Long M S, Hu W D, Wang L, Qi Y P, Gao J, Wu Q Y, Ge X T, Ning J Q, Wee A T S, Qiu C W 2021 Phys. Rev. Lett. 127 217401Google Scholar
[4] Zhu B R, Xiao K, Yang S Y, Watanabe K, Taniguchi T, Cui X D 2023 Phys. Rev. Lett. 131 036901Google Scholar
[5] Liu X G, Pyatakov A P, Ren W 2020 Phys. Rev. Lett. 125 247601Google Scholar
[6] Liu X E, Yang Y L, Hu T, Zhao G D, Chen C, Ren W 2019 Nanoscale 11 18575Google Scholar
[7] Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y S, Kim B, Watanabe K, Taniguchi T, Zhu X Y, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar
[8] de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427Google Scholar
[9] Liu Y, Duan X D, Shin H J, Park S, Huang Y, Duan X F 2021 Nature 591 43Google Scholar
[10] Wang S, ur Rehman Z, Liu Z F, Li T R, Li Y L, Wu Y B, Zhu H G, Cui S T, Liu Y, Zhang G B 2022 Chin. Phys. Lett. 39 077102Google Scholar
[11] 郝国强, 张瑞, 张文静, 陈娜, 叶晓军, 李红波 2022 物理学报 71 240Google Scholar
Hao G Q, Zhang R, Zhang W J, Chen N, Ye X J, Li H B 2022 Acta Phys. Sin. 71 240Google Scholar
[12] 邓霖湄, 司君山, 吴绪才, 张卫兵 2022 物理学报 71 147101Google Scholar
Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101Google Scholar
[13] Zhao W, Pan J, Fang Y, Che X, Wang D, Bu K, Huang F 2018 Chem. Eur. J. 24 15942Google Scholar
[14] Duerloo K A, Li Y, Reed E J 2014 Nat. Commun. 5 4214Google Scholar
[15] Duvjir G, Choi B K, Ly T T, Lam N H, Chun S H, Jang K, Soon A, Chang Y J, Kim J 2019 Nanoscale 11 20096Google Scholar
[16] Sun Y F, Wang Y X, Sun D, Carvalho B R, Read C G, Lee C H, Lin Z, Fujisawa K, Robinson J A, Crespi V H, Terrones M, Schaak R E 2016 Angew. Chem. Int. Ed. 55 2830Google Scholar
[17] Liu Z Q, Li N, Su C, Zhao H Y, Xu L L, Yin Z Y, Li J, Du Y P 2018 Nano Energy 50 176Google Scholar
[18] Kar I, Dolui K, Harnagea L, Kushnirenko Y, Shipunov G, Plumb N C, Shi M, Büchner B, Thirupathaiah S 2021 J. Phys. Chem. C 125 1150Google Scholar
[19] Liu E F, Fu Y J, Wang Y J, Feng Y Q, Liu H M, Wan X G, Zhou W, Wang B G, Shao L B, Ho C H, Huang Y S, Cao Z Y, Wang L G, Li A D, Zeng J W, Song F Q, Wang X R, Shi Y, Yuan H T, Hwang H Y, Cui Y, Miao F, Xing D Y 2015 Nat. Commun. 6 6991Google Scholar
[20] Niehues I, Deilmann T, Kutrowska-Girzycka J, Taghizadeh A, Bryja L, Wurstbauer U, Bratschitsch R, Jadczak J 2022 Phys. Rev. B 105 205432Google Scholar
[21] Fang Y, Hu X, Zhao W, Pan J, Wang D, Bu K, Mao Y, Chu S, Liu P, Zhai T, Huang F 2019 J. Am. Chem. Soc. 141 790Google Scholar
[22] Lipatov A, Chaudhary P, Guan Z, Lu H, Li G, Crégut O, Dorkenoo K D, Proksch R, Cherifi-Hertel S, Shao D F, Tsymbal E Y, Íñiguez J, Sinitskii A, Gruverman A 2022 npj 2D Mater. Appl. 6 18Google Scholar
[23] Liu L, Chen S S, Lin Z Z, Zhang X 2020 J. Phys. Chem. Lett. 11 7893Google Scholar
[24] Gao G, Jiao Y, Ma F, Jiao Y, Waclawik E, Du A 2015 J. Phys. Chem. C 119 13124Google Scholar
[25] Fu Q, Han J, Wang X, Xu P, Yao T, Zhong J, Zhong W, Liu S, Gao T, Zhang Z, Xu L, Song B 2021 Adv. Mater. 33 e1907818Google Scholar
[26] Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J, Lee Y H 2015 Nat. Phys. 11 482Google Scholar
[27] Lai Z C, He Q Y, Ha Tran T, Repaka D V M, Zhou D D, Sun Y, Xi S B, Li Y X, Chaturvedi A, Tan C L, Chen B, Nam G H, Li B, Ling C Y, Zhai W, Shi Z Y, Hu D Y, Sharma V, Hu Z N, Chen Y, Zhang Z C, Yu Y F, Wang X R, Ramanujan R V, Ma Y M, Hippalgaonkar K, Zhang H 2021 Nat. Mater. 20 1113Google Scholar
[28] Song M S, Shi Q, Kan D X, Wei S R, Xu F M, Huo W T, Chen K Y 2023 Appl. Surf. Sci. 612 155761Google Scholar
[29] Tanimura H, Okamoto N L, Homma T, Sato Y, Ishii A, Takamura H, Ichitsubo T 2022 Phys. Rev. B 105 245402Google Scholar
[30] Kiem D, Jeong M Y, Yoon H, Han M J 2022 Nanoscale 14 10009Google Scholar
[31] Chen K, Deng J, Kan D, Yan Y, Shi Q, Huo W, Song M, Yang S, Liu J Z 2022 Phys. Rev. B 105 024414Google Scholar
[32] Zhang M G, Chen L F, Feng L, Tuo H H, Zhang Y, Wei Q, Li P F 2023 Chin. Phys. B 32 086101Google Scholar
[33] Zhao Y, Cong H, Li P, Wu D, Chen S, Luo W 2021 Angew. Chem. Int. Ed. 60 7013Google Scholar
[34] Ersan F, Cahangirov S, Gökoglu G, Rubio A, Aktürk E 2016 Phys. Rev. B 94 155415Google Scholar
[35] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[36] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar
[37] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar
[38] Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar
[39] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[40] Cococcioni M, de Gironcoli S 2005 Phys. Rev. B 71 035105Google Scholar
[41] Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar
[42] Bucher D, Pierce L C T, McCammon J A, Markwick P R L 2011 J. Chem. Theory Comput. 7 890Google Scholar
[43] Lang H F, Zhang S Q, Liu Z R 2016 Phys. Rev. B 94 235306Google Scholar
[44] Abdullahi Y Z, Ahmad S 2021 Phys. Chem. Chem. Phys. 23 16316Google Scholar
[45] Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Proc. Natl. Acad. Sci. U.S.A. 112 2372Google Scholar
[46] Zhang G T, Lu K J, Wang Y F, Wang H W, Chen Q 2022 Phys. Rev. B 105 235303Google Scholar
[47] Wang Y T, Tang X H, Zhou Q H, Chen X Y, Chen Q, Xu Y H 2020 Phys. Rev. B 102 165428Google Scholar
[48] Zhou Q H, Chen Q, Tong Y L, Wang J L 2016 Angew. Chem. Int. Ed. 55 11437Google Scholar
计量
- 文章访问数: 2508
- PDF下载量: 78
- 被引次数: 0