-
基于第一性原理计算方法, 研究了二维XO2 (X = Ni, Pd, Pt)的稳定性、弹性、电子结构和热导率. 计算结果显示, 二维XO2同时具备较好的机械和动力学稳定性. 此外, 二维NiO2, PdO2和PtO2的杨氏模量分别为124.69 N/m, 103.31 N/m和116.51 N/m, 泊松比分别为0.25, 0.24和0.27, 并呈现各向同性. 电子能带结构表明, 二维XO2 (X = Ni, Pd, Pt)为间接带隙半导体, 计算能隙分别为2.95 eV, 3.00 eV和3.34 eV, 且价带顶和导带底的能级主要由Ni-3d, Pd-4d, Pt-5d和O-2p轨道电子组成. 通过畸变势理论计算载流子迁移率, 结果显示二维XO2 (X = Ni, Pd, Pt)沿armchair和zigzag方向的有效质量和形变势表现出明显的各向异性, 电子/空穴的迁移率最高分别为13707.96/53.25 cm2·V–1·s–1, 1288.12/19.18 cm2·V–1·s–1和404.71/270.60 cm2·V–1·s–1. 此外, 在300 K温度下, 二维XO2 (X = Ni, Pd, Pt)的晶格热导率分别为53.55 W·m–1·K–1, 19.06 W·m–1·K–1和17.43 W·m–1·K–1, 这表明二维XO2 (X = Ni, Pd, Pt)在纳米电子材料和导热器件方面具备应用潜力.
-
关键词:
- 二维XO2 (X = Ni, Pd, Pt) /
- 电子结构 /
- 载流子迁移率 /
- 热导率
Based on the first-principles calculations, the stability, elastic constants, electronic structure, and lattice thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt) are investigated in this work. The results show that XO2 (X = Ni, Pd, Pt) have mechanical and dynamic stability at the same time. In addition, the Young’s modulus of monolayer NiO2, PdO2 and PtO2 are 124.69 N·m–1, 103.31 N·m–1 and 116.51 N·m–1, Poisson’s ratio of monolayer NiO2, PdO2 and PtO2 are 0.25, 0.24 and 0.27, respectively, and each of them possesses high isotropy. The band structures show that monolayer XO2 (X = Ni, Pd, Pt) are indirect band-gap semiconductors with energy gap of 2.95 eV, 3.00 eV and 3.34 eV, respectively, and the energy levels near the valence band maximum and conduction band minimum are mainly composed of Ni-3d/Pd-4d/Pt-5d and O-2p orbital electrons. Based on deformation potential theory, the carrier mobility of each monolayer is calculated, and the results show that the effective mass and deformation potential of monolayer XO2 (X = Ni, Pd, Pt) along the armchair and zigzag directions show obvious anisotropy, and the highest electron and hole mobility are 13707.96 and 53.25 cm2·V–1·s–1, 1288.12 and 19.18 cm2·V–1·s–1, and 404.71 and 270.60 cm2·V–1·s–1 for NiO2, PdO2 and PtO2, respectively. Furthermore, the lattice thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt) at 300 K are 53.55 W·m–1·K–1, 19.06 W·m–1·K–1 and 17.43 W·m–1·K–1, respectively. These properties indicate that monolayer XO2 (X = Ni, Pd, Pt) have potential applications in nanometer electronic materials and thermal conductivity devices.-
Keywords:
- monolayer XO2 (X = Ni, Pd, Pt) /
- electronic structure /
- carrier mobility /
- lattice thermal conductivity
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Wang D, Song X L, Li P, Gao X J J, Gao X F 2020 J. Mater. Chem. B 8 9028Google Scholar
[3] Halo M, Casassa S, Maschio L, Pisani C, Dovesi R, Ehinon D, Baraille I, Rerat M, Usvyat D 2011 Phys. Chem. Chem. Phys. 13 4434Google Scholar
[4] Zhou M F, Wang W H, Lu J P, Ni Z H 2021 Nano Res. 14 29Google Scholar
[5] Fang W Y, Kang W B, Zhao J, Zhang P C 2020 Chin. Phys. B 29 096301Google Scholar
[6] Yeoh K H, Yoon T L, Rusi, Ong D S, Lim T L 2018 Appl. Surf. Sci. 445 161Google Scholar
[7] Yuan J H, Yu N N, Xue K H, Miao X S 2017 Appl. Surf. Sci. 409 85Google Scholar
[8] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 223109Google Scholar
[9] Yang Y, Zhang H, Song L H, Liu Z L 2021 Appl. Surf. Sci. 542 148691Google Scholar
[10] Li X B, Guo P, Cao T F, Liu H, Lau W M, Liu L M 2015 Sci. Rep. 5 10848Google Scholar
[11] Sharma S, Kumar S, Schwingenschlögl U 2017 Phys. Rev. Appl. 8 044013Google Scholar
[12] Shi Z Q, Li H, Xue C L, Yuan Q Q, Lv Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W, Li S C 2020 Nano Lett. 20 8408Google Scholar
[13] Li T S 2012 Phys. Rev. B 85 235407Google Scholar
[14] Peng R, Ma Y, He Z, Huang B, Kou L, Dai Y 2019 Nano Lett. 19 1227Google Scholar
[15] Yan P, Gao G Y, Ding G Q, Qin D 2019 Rsc Adv. 9 12394Google Scholar
[16] Naghavi S S, He J, Xia Y, Wolverton C 2018 Chem. Mater. 30 5639Google Scholar
[17] Hu Z Y, Li K Y, Lu Y, Huang Y, Shao X H 2017 Nanoscale 9 16093Google Scholar
[18] Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959Google Scholar
[19] Chen Z Y, Xiong M, Zeng Z Y, Chen X R, Chen Q F 2021 Solid State Commun. 326 114163Google Scholar
[20] Rajput K, Roy D R 2019 Appl. Nanosci. 9 1845Google Scholar
[21] Qu L H, Yu J, Mu Y L, Fu X L, Zhong C G, Min Y, Zhou P X, Zhang J M, Zou Y Q, Lu T S 2019 Mater. Res. Bull. 119 110533Google Scholar
[22] Chaurasiya R, Dixit A, Pandey R 2019 J. Appl. Phys. 125 082540Google Scholar
[23] Ersan F, Ozaydin H D, Gokoglu G, Akturk E 2017 Appl. Surf. Sci. 425 301Google Scholar
[24] Cakir D, Peeters F M, Sevik C 2014 Appl. Phys. Lett. 104 203110Google Scholar
[25] Shukla A, Gaur N K 2020 Chem. Phys. Lett. 754 137717Google Scholar
[26] Shang J, Li C, Tang X, Du A J, Liao T, Gu Y T, Ma Y D, Kou L Z, Chen C F 2020 Nanoscale 12 14847Google Scholar
[27] Chaouche A C, Lachebi A, Abid H, Benchehima M, Driz M 2019 Superlattices Microstruct. 130 249Google Scholar
[28] Zhu Y Y, Ji X, Cheng S, Chern Z Y, Jia J, Yang L F, Luo H W, Yu J Y, Peng X W, Wang J H, Zhou W J, Liu M L 2019 Acs Nano 13 9091Google Scholar
[29] Wang Y J, Li F F, Zheng H L, Han X F, Yan Y 2018 Phys. Chem. Chem. Phys. 20 28162Google Scholar
[30] Huang Q J, Ma J L, Xu D W, Hu R, Luo X B 2020 J. Appl. Phys. 128 185111Google Scholar
[31] Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar
[32] Yuan J H, Song Y Q, Chen Q, Xue K H, Miao X S 2019 Appl. Surf. Sci. 469 456Google Scholar
[33] Ho T H, Dong H C, Bui V Q, Kawazoe Y, Le H M 2020 Phys. Chem. Chem. Phys. 22 18149Google Scholar
[34] Yuan H, Li Z Y, Yang J L 2018 J. Mater. Chem. C 6 9055Google Scholar
[35] Mohammed H A H, Dongho-Nguimdo G M, Joubert D P 2021 Physica E 127 114514Google Scholar
[36] Lei Z H, Wang W L, She J C 2021 Chin. Phys. B 30 047102Google Scholar
[37] Shimazaki T, Suzuki T, Kubo M 2011 Theor. Chem. Acc. 130 1031Google Scholar
[38] Shokri A, Yazdani A, Rahimi K 2020 Mater. Chem. Phys. 255 123617Google Scholar
[39] Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar
[40] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865Google Scholar
[41] Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar
[42] Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar
[43] Blochl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar
[44] Eriksson F, Fransson E, Erhart P 2019 Adv. Theor. Simul. 2 1800184Google Scholar
[45] Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar
[46] Togo A, Chaput L, Tanaka I 2015 Phys. Rev. B 91 094306Google Scholar
[47] Zhang C Z, Liu J Y, Shen H M, Lo X Z, Sun Q 2017 Chem. Mater. 29 8588Google Scholar
[48] Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y 2014 J. Chem. Phys. 140 114702Google Scholar
[49] Qin Y, Zha X H, Bai X, Luo K, Huang Q, Wang Y, Du S 2020 J. Phys.: Condens. Matter 32 135302Google Scholar
[50] Xiong W Q, Huang K X, Yuan S J 2019 J. Mater. Chem. C 7 13518Google Scholar
[51] Lajevardipour A, Neek-Amal M, Peeters F M 2012 J. Phys-Condens. Mat. 24 175303Google Scholar
[52] Hess P 2017 Nanotechnology 28 064002Google Scholar
[53] Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar
[54] Jain A, McGaughey A J 2015 Sci. Rep. 5 8501Google Scholar
[55] Hossain M T, Rahman M A 2020 J. Mol. Model. 26 40Google Scholar
[56] Min K, Aluru N R 2011 Appl. Phys. Lett. 98 013113Google Scholar
[57] Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406Google Scholar
[58] Jing Y, Ma Y D, Li Y F, Heine T 2017 Nano Lett. 17 1833Google Scholar
[59] Pu C Y, Yu J H, Yu R M, Tang X, Zhou D W 2019 J. Mater. Chem. C 7 12231Google Scholar
[60] Zha X H, Zhou J, Luo K, Lang J J, Huang Q, Zhou X, Francisco J S, He J, Du S 2017 J. Phys.: Condens. Matter. 29 165701Google Scholar
[61] Xu Y, Liu G, Xing S A, Zhao G, Yang J 2020 J. Mater. Chem. C 8 14902Google Scholar
[62] Fei R X, Li Y 2014 Nano Lett. 14 2884Google Scholar
[63] Fang R H, Cui X Y, Stampfl C, Ringer S P, Zheng R K 2020 Phys. Chem. Chem. Phys. 22 2276Google Scholar
[64] Zeng L, Xin Z, Chen S W, Du G, Kang J F, Liu X Y 2014 Chinese Phys. Lett. 31 027301Google Scholar
[65] Nemec H, Kratochvilova I, Kuzel P, Sebera J, Kochalska A, Nozar J, Nespurek S 2011 Phys. Chem. Chem. Phys. 13 2850Google Scholar
[66] Hong Y, Zhang J, Huang X, Zeng X C 2015 Nanoscale 7 18716Google Scholar
[67] Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar
[68] Peng B, Zhang H, Shao H Z, Xu Y C, Zhang X C, Zhu H Y 2016 Sci. Rep-Uk 6 20225Google Scholar
[69] Gu X K, Yang R G 2015 J. Appl. Phys. 117 025102Google Scholar
[70] Cai Y Q, Lan J H, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 035438Google Scholar
[71] Zulfiqar M, Zhao Y C, Li G, Li Z C, Ni J 2019 Sci. Rep-Uk 9 4571Google Scholar
[72] Feng T, Ruan X 2018 Phys. Rev. B 97 045202Google Scholar
[73] Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar
[74] Chen X K, Chen K Q 2020 J. Phys.: Condens. Matter. 32 153002Google Scholar
-
图 6 二维XO2 (X = Ni, Pd, Pt)平面刚度和形变势拟合曲线 (a)−(c) NiO2; (d)−(f) PdO2; (g)−(i) PtO2. (a), (d), (g)能量对单轴应变的二次项拟合来计算平面刚度; (b)和(c), (e)和(f), (h)和(i) 沿扶手椅和之字形方向价带顶和导带底的能量对应变量的线性拟合, 用于计算变形势
Fig. 6. Schematic diagram of plane stiffness and deformation potential of monolayer XO2 (X = Ni, Pd, Pt): (a)−(c) NiO2; (d)−(f) PdO2; (g)−(i) PtO2. (a), (d), (g) Quadratic fitting of the energy difference to the uniaxial strain are used to calculate the plane stiffness. (b) and (c), (e) and (f), (h) and (i) Linear fitting of the energy of VBM and CBM relative to the uniaxial strain along armchair and zigzag direction, which are used to calculate the deformation potential.
表 1 二维XO2 (X = Ni, Pd, Pt)结构参数和结合能
Table 1. Structure parameters and binding energies of monolayer XO2 (X = Ni, Pd, Pt).
Monolayers a/b /Å l /Å θ1/(°) θ2/(°) h /Å Ef/(eV·atom–1) Band gap/eV PBE PBE + SOC HSE06 NiO2 2.82 1.88 96.84 83.16 1.90 5.78 1.39 1.21 2.95 PdO2 3.07 2.03 98.54 81.46 1.96 4.93 1.50 1.40 3.00 PtO2 3.13 2.05 99.64 80.34 1.93 5.77 1.83 1.73 3.34 表 2 在300 K下, 二维XO2 (X = Ni, Pd, Pt)的有效质量(m*)、弹性模量(C 2D)、形变势(El)、电子和空穴迁移率(μ)
Table 2. Calculated effective mass (m*), elastic modulus (C 2D), deformation-potential constant (El), electron and hole mobility (μ) of monolayer XO2 (X = Ni, Pd, Pt) at 300 K.
Materials Direction Carrier type m*/m0 C 2D/(N·m–1) El/eV μ/(cm2·V–1·s–1) NiO2 Armchair Electron 0.63 134.81 0.56 13707.96 Hole 2.00 2.29 53.25 Zigzag Electron 1.80 135.21 0.88 1944.53 Hole 13.19 2.26 8.32 PdO2 Armchair Electron 0.81 113.38 1.28 1288.12 Hole 2.52 3.02 19.18 Zigzag Electron 2.42 114.25 2.10 162.17 Hole 11.81 3.01 4.16 PtO2 Armchair Electron 0.80 122.60 4.27 404.71 Hole 1.17 1.51 270.60 Zigzag Electron 2.51 123.25 4.27 40.46 Hole 8.77 1.51 40.86 BP a-axis Electron 0.17 24.81 1.59 2652.06 Hole 0.16 2.66 495.37 b-axis Electron 1.25 105.45 5.27 140.35 Hole 5.71 0.13 24469.72 -
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[2] Wang D, Song X L, Li P, Gao X J J, Gao X F 2020 J. Mater. Chem. B 8 9028Google Scholar
[3] Halo M, Casassa S, Maschio L, Pisani C, Dovesi R, Ehinon D, Baraille I, Rerat M, Usvyat D 2011 Phys. Chem. Chem. Phys. 13 4434Google Scholar
[4] Zhou M F, Wang W H, Lu J P, Ni Z H 2021 Nano Res. 14 29Google Scholar
[5] Fang W Y, Kang W B, Zhao J, Zhang P C 2020 Chin. Phys. B 29 096301Google Scholar
[6] Yeoh K H, Yoon T L, Rusi, Ong D S, Lim T L 2018 Appl. Surf. Sci. 445 161Google Scholar
[7] Yuan J H, Yu N N, Xue K H, Miao X S 2017 Appl. Surf. Sci. 409 85Google Scholar
[8] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B 2010 Appl. Phys. Lett. 97 223109Google Scholar
[9] Yang Y, Zhang H, Song L H, Liu Z L 2021 Appl. Surf. Sci. 542 148691Google Scholar
[10] Li X B, Guo P, Cao T F, Liu H, Lau W M, Liu L M 2015 Sci. Rep. 5 10848Google Scholar
[11] Sharma S, Kumar S, Schwingenschlögl U 2017 Phys. Rev. Appl. 8 044013Google Scholar
[12] Shi Z Q, Li H, Xue C L, Yuan Q Q, Lv Y Y, Xu Y J, Jia Z Y, Gao L, Chen Y, Zhu W, Li S C 2020 Nano Lett. 20 8408Google Scholar
[13] Li T S 2012 Phys. Rev. B 85 235407Google Scholar
[14] Peng R, Ma Y, He Z, Huang B, Kou L, Dai Y 2019 Nano Lett. 19 1227Google Scholar
[15] Yan P, Gao G Y, Ding G Q, Qin D 2019 Rsc Adv. 9 12394Google Scholar
[16] Naghavi S S, He J, Xia Y, Wolverton C 2018 Chem. Mater. 30 5639Google Scholar
[17] Hu Z Y, Li K Y, Lu Y, Huang Y, Shao X H 2017 Nanoscale 9 16093Google Scholar
[18] Fang W Y, Li P A, Yuan J H, Xue K H, Wang J F 2019 J. Electron. Mater. 49 959Google Scholar
[19] Chen Z Y, Xiong M, Zeng Z Y, Chen X R, Chen Q F 2021 Solid State Commun. 326 114163Google Scholar
[20] Rajput K, Roy D R 2019 Appl. Nanosci. 9 1845Google Scholar
[21] Qu L H, Yu J, Mu Y L, Fu X L, Zhong C G, Min Y, Zhou P X, Zhang J M, Zou Y Q, Lu T S 2019 Mater. Res. Bull. 119 110533Google Scholar
[22] Chaurasiya R, Dixit A, Pandey R 2019 J. Appl. Phys. 125 082540Google Scholar
[23] Ersan F, Ozaydin H D, Gokoglu G, Akturk E 2017 Appl. Surf. Sci. 425 301Google Scholar
[24] Cakir D, Peeters F M, Sevik C 2014 Appl. Phys. Lett. 104 203110Google Scholar
[25] Shukla A, Gaur N K 2020 Chem. Phys. Lett. 754 137717Google Scholar
[26] Shang J, Li C, Tang X, Du A J, Liao T, Gu Y T, Ma Y D, Kou L Z, Chen C F 2020 Nanoscale 12 14847Google Scholar
[27] Chaouche A C, Lachebi A, Abid H, Benchehima M, Driz M 2019 Superlattices Microstruct. 130 249Google Scholar
[28] Zhu Y Y, Ji X, Cheng S, Chern Z Y, Jia J, Yang L F, Luo H W, Yu J Y, Peng X W, Wang J H, Zhou W J, Liu M L 2019 Acs Nano 13 9091Google Scholar
[29] Wang Y J, Li F F, Zheng H L, Han X F, Yan Y 2018 Phys. Chem. Chem. Phys. 20 28162Google Scholar
[30] Huang Q J, Ma J L, Xu D W, Hu R, Luo X B 2020 J. Appl. Phys. 128 185111Google Scholar
[31] Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131Google Scholar
[32] Yuan J H, Song Y Q, Chen Q, Xue K H, Miao X S 2019 Appl. Surf. Sci. 469 456Google Scholar
[33] Ho T H, Dong H C, Bui V Q, Kawazoe Y, Le H M 2020 Phys. Chem. Chem. Phys. 22 18149Google Scholar
[34] Yuan H, Li Z Y, Yang J L 2018 J. Mater. Chem. C 6 9055Google Scholar
[35] Mohammed H A H, Dongho-Nguimdo G M, Joubert D P 2021 Physica E 127 114514Google Scholar
[36] Lei Z H, Wang W L, She J C 2021 Chin. Phys. B 30 047102Google Scholar
[37] Shimazaki T, Suzuki T, Kubo M 2011 Theor. Chem. Acc. 130 1031Google Scholar
[38] Shokri A, Yazdani A, Rahimi K 2020 Mater. Chem. Phys. 255 123617Google Scholar
[39] Hafner J 2008 J. Comput. Chem. 29 2044Google Scholar
[40] Perdew J P, Burke K, Ernzerhof M 1997 Phys. Rev. Lett. 77 3865Google Scholar
[41] Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar
[42] Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar
[43] Blochl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B 49 16223Google Scholar
[44] Eriksson F, Fransson E, Erhart P 2019 Adv. Theor. Simul. 2 1800184Google Scholar
[45] Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar
[46] Togo A, Chaput L, Tanaka I 2015 Phys. Rev. B 91 094306Google Scholar
[47] Zhang C Z, Liu J Y, Shen H M, Lo X Z, Sun Q 2017 Chem. Mater. 29 8588Google Scholar
[48] Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y 2014 J. Chem. Phys. 140 114702Google Scholar
[49] Qin Y, Zha X H, Bai X, Luo K, Huang Q, Wang Y, Du S 2020 J. Phys.: Condens. Matter 32 135302Google Scholar
[50] Xiong W Q, Huang K X, Yuan S J 2019 J. Mater. Chem. C 7 13518Google Scholar
[51] Lajevardipour A, Neek-Amal M, Peeters F M 2012 J. Phys-Condens. Mat. 24 175303Google Scholar
[52] Hess P 2017 Nanotechnology 28 064002Google Scholar
[53] Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar
[54] Jain A, McGaughey A J 2015 Sci. Rep. 5 8501Google Scholar
[55] Hossain M T, Rahman M A 2020 J. Mol. Model. 26 40Google Scholar
[56] Min K, Aluru N R 2011 Appl. Phys. Lett. 98 013113Google Scholar
[57] Kudin K N, Scuseria G E, Yakobson B I 2001 Phys. Rev. B 64 235406Google Scholar
[58] Jing Y, Ma Y D, Li Y F, Heine T 2017 Nano Lett. 17 1833Google Scholar
[59] Pu C Y, Yu J H, Yu R M, Tang X, Zhou D W 2019 J. Mater. Chem. C 7 12231Google Scholar
[60] Zha X H, Zhou J, Luo K, Lang J J, Huang Q, Zhou X, Francisco J S, He J, Du S 2017 J. Phys.: Condens. Matter. 29 165701Google Scholar
[61] Xu Y, Liu G, Xing S A, Zhao G, Yang J 2020 J. Mater. Chem. C 8 14902Google Scholar
[62] Fei R X, Li Y 2014 Nano Lett. 14 2884Google Scholar
[63] Fang R H, Cui X Y, Stampfl C, Ringer S P, Zheng R K 2020 Phys. Chem. Chem. Phys. 22 2276Google Scholar
[64] Zeng L, Xin Z, Chen S W, Du G, Kang J F, Liu X Y 2014 Chinese Phys. Lett. 31 027301Google Scholar
[65] Nemec H, Kratochvilova I, Kuzel P, Sebera J, Kochalska A, Nozar J, Nespurek S 2011 Phys. Chem. Chem. Phys. 13 2850Google Scholar
[66] Hong Y, Zhang J, Huang X, Zeng X C 2015 Nanoscale 7 18716Google Scholar
[67] Zhu L Y, Zhang G, Li B W 2014 Phys. Rev. B 90 214302Google Scholar
[68] Peng B, Zhang H, Shao H Z, Xu Y C, Zhang X C, Zhu H Y 2016 Sci. Rep-Uk 6 20225Google Scholar
[69] Gu X K, Yang R G 2015 J. Appl. Phys. 117 025102Google Scholar
[70] Cai Y Q, Lan J H, Zhang G, Zhang Y W 2014 Phys. Rev. B 89 035438Google Scholar
[71] Zulfiqar M, Zhao Y C, Li G, Li Z C, Ni J 2019 Sci. Rep-Uk 9 4571Google Scholar
[72] Feng T, Ruan X 2018 Phys. Rev. B 97 045202Google Scholar
[73] Zeng Y J, Feng Y X, Tang L M, Chen K Q 2021 Appl. Phys. Lett. 118 183103Google Scholar
[74] Chen X K, Chen K Q 2020 J. Phys.: Condens. Matter. 32 153002Google Scholar
计量
- 文章访问数: 6938
- PDF下载量: 212
- 被引次数: 0