搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非金属原子掺杂的GaN纳米管: 电子结构、输运特性及电场调控效应

汤家鑫 范志强 邓小清 张振华

引用本文:
Citation:

非金属原子掺杂的GaN纳米管: 电子结构、输运特性及电场调控效应

汤家鑫, 范志强, 邓小清, 张振华

Non-metallic atom doped GaN nanotubes: Electronic structure, transport properties, and gate voltage regulating effects

Tang Jia-Xin, Fan Zhi-Qiang, Deng Xiao-Qing, Zhang Zhen-Hua
PDF
HTML
导出引用
  • GaN被称为第三代半导体, 有着重要的应用前景. 本文对其衍生的一维锯齿型纳米管进行了系统研究, 重点研究了IIIA-VIIA主族的所有非金属原子低浓度掺杂纳米管后的化学结合特性、电子结构、输运特性及栅极电压调控效应等, 并且有一些重要的发现, 如: 掺杂纳米管具有良好的能量与热稳定性, 它们的结合能、形成能及杂质原子周围化学键的平均键长与掺杂原子的原子序数(原子半径)有密切联系; 杂质原子与纳米管之间的电荷转移与它们之间的相对电负性有直接关系. 更重要的是, 研究发现虽然本征纳米管是半导体, 但非金属原子掺杂后, 纳米管的电子相具有明显的奇-偶效应, 即掺杂第IIIA, VA, VIIA族原子后, 纳米管仍为半导体, 而掺杂第IVA, VIA族原子后, 纳米管变为金属, 这些现象与孤对电子态有密切关系. 对半导体材料的载流子迁移率研究发现: 掺杂异质原子, 能调控纳米管的空穴及电子迁移率产生1个数量级的差异, 特别是较高的栅极电压能明显提高空穴及电子迁移率, 如当栅极电压为18 V时, 空穴迁移率相对未加电压时的情况增大了近20倍.
    GaN is known as the third generation of semiconductor and holds promising applications. In this present work, one-dimensional zigzag nanotubes derived from GaN are studied in depth, mainly focusing on their chemical bondings, electronic structures, transport properties, and the regulating effects under gate voltage for nanotubes doped with low-concentration non-metallic atoms in main-groups IIIA-VIIA. Some important findings are obtained, such as the chemical bonds around a heteroatom atom, and their average bond length, binding energy, and chemical formation energy are closely related to the atomic number (the atomic radius), and the charge transfer between heteroatom and nanotubes is directly related to their relative electronegativity. More importantly, we find that although the intrinsic nanotube is a semiconductor, when it is doped with non-metallic atoms, the electronic phase of nanotube possesses an obvious odd-even effect. Namely, after being doped by hetero-atoms in main-groups IIIA, VA, VIIA, nanotubes are semiconductors, but they becomes metals after having been doped with hetero-atoms in main-groups IVA and VIA. This phenomenon has a close relation with the lone-paired electronic state. And also, It is found that with atom doping, the difference between carriers’ mobilities (the hole mobility and electron mobility) of semiconducting tubes can be regulated to reach one order of magnitude, especially the hole mobility and electron mobility can be obviously enhanced by a higher gate voltage. For example, when the gate voltage is increased to 18 V, the hole mobility rises nearly 20 times compared with the case without gate voltage.
      通信作者: 汤家鑫, csustjxt@163.com ; 张振华, zhzhang@csust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61771076, 12074046)、湖南省自然科学基金(批准号: 2020JJ4625, 2021JJ30733)和湖南省教育厅科研项目(批准号:19A029)资助的课题.
      Corresponding author: Tang Jia-Xin, csustjxt@163.com ; Zhang Zhen-Hua, zhzhang@csust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771076, 12074046), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2020JJ4625, 2021JJ30733), and the Scientific Research Fund of Hunan Provincial Education Department, China (Grant No. 19A029).
    [1]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60Google Scholar

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. 102 10451Google Scholar

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [5]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [6]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 817

    [7]

    Huang H, Jiang B, Zou X M, Zhao X Z, Liao L 2019 Sci. Bull. 64 1067Google Scholar

    [8]

    Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J 2014 2D Mater. 1 025001

    [9]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar

    [10]

    Tareen A K, Khan K, Aslam M, Liu X K, Zhang H 2021 Prog. Solid. State Chem. 61 100294Google Scholar

    [11]

    Khan K, Tareen A K, Aslam M, Wang R H, Zhang Y P, Mahmood A, Ouyang Z B, Zhang H, Guo Z Y 2020 J. Mater. Chem. C 8 387Google Scholar

    [12]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223Google Scholar

    [13]

    Camacho-Mojica D C, López-Urías F 2015 Sci. Rep. 5 17902

    [14]

    Al Balushi Z Y, Wang Ke, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X Y, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [15]

    Chen Y X, Liu K L, Liu J X, Lv T R, Wei B, Zhang T, Zeng M Q, Wang Z C, Fu L 2018 J. Am. Chem. Soc. 140 16392Google Scholar

    [16]

    Meng X S, Liu H L, Lin L K, Cheng Y B, Hou X, Zhao S Y, Lu H M, Meng X K 2021 Appl. Surf. Sci. 539 148302Google Scholar

    [17]

    Li S, Xing H Z, Xie R K, ZengY J, Huang Y, Lu A J, Chen X S 2018 Physica E 97 144Google Scholar

    [18]

    Alaal N, Roqan I S 2020 ACS Omega 5 1261Google Scholar

    [19]

    Kadioglu Y, Ersan F, Kecik D, Akturk O U, Akturk E, Ciraci S 2018 Phys. Chem. Chem. Phys. 20 16077Google Scholar

    [20]

    Maier K, Helwig A, Muller G, Hille P, Teubert J, Eickhoff M 2017 Nano Lett. 17 615Google Scholar

    [21]

    Kong Y K, Liu L, Xia S H, Wang H G, Wang M S 2016 Comput. Theor. Chem. 1092 19Google Scholar

    [22]

    Goldberger J, He R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 34 599

    [23]

    Hemmingsson C, Pozina G, Khromov S, Monemar B 2011 Nanotechnology 22 085602Google Scholar

    [24]

    Ribeiro C C, de Jesus Gomes Varela J, Guerini S 2018 J. Mol. Model 24 192Google Scholar

    [25]

    Yang M, Shi J J, Zhang M, Zhang S, Bao Z Q, Luo S J, Zhou T C, Zhu T C, Li X, Li J 2013 Mater. Chem. Phys. 138 225Google Scholar

    [26]

    Moradian R, Azadi S, Farahani S V 2008 Phys. Lett. A 372 6935Google Scholar

    [27]

    Kuang W, Hu R, Fan Z Q, Zhang Z H 2019 Nanotechnology 30 145201Google Scholar

    [28]

    Han J N, Zhang Z H, Fan Z Q, Zhou R L 2020 Nanotechnology 31 315206Google Scholar

    [29]

    Hu R, Wang D, Fan Z Q, Zhang Z H 2018 Phys. Chem. Chem. Phys. 20 13574Google Scholar

    [30]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [31]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D: Appl. Phys. 52 475301Google Scholar

    [32]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745

    [33]

    Dong Q X, Hu R, Fan Z Q, Zhang Z H 2018 Carbon 130 206Google Scholar

    [34]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnology 30 485703Google Scholar

    [35]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [36]

    Yuan P F, Hu R, Fan Z Q, Zhang Z H 2018 J. Phys.: Condens. Matter 30 445802Google Scholar

    [37]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301Google Scholar

    [38]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [39]

    Long M Q, Tang L, Wang D, Wang L J, Shuai Z G 2009 J. Am. Chem. Soc. 131 17728Google Scholar

    [40]

    Yuan P F, Fan Z Q, Zhang Z H 2017 Carbon 124 228Google Scholar

  • 图 1  (a) GaN纳米带的正视图和侧视图(虚线框内为纳米带单胞); (b) GaN纳米管的正视图和侧视图(虚线框内为纳米管单胞); (c) 本征纳米管的能带结构; (d) 掺杂纳米管的原子结构, X表示掺杂原子, d1, d2, d3分别表示掺杂原子周围的三根共价键

    Fig. 1.  (a) Top and side views of GaN nanoribbon (the black dashed-line box indicates the unit cell of GaN nanoribbon); (b) top and side views of GaN nanotube (the black dashed-line box represents the unit cell of GaN nanotube); (c) band structure of intrinsic nanotube; (d) the atomic structure of doped nanotube, X represents a doped atom, and d1, d2 and d3 are three covalent bonds around a doped atom, respectively.

    图 2  (a) 纳米管NT-X结合能EB及形成能EF随主族VIA非金属掺杂元素X (= O, S, Se, Te)的变化; (b) 纳米管NT-X结合能EB及形成能EF随第二周期非金属掺杂元素X (= B, C, N, O, F)的变化; (c) NT-X的平均键长$\bar{d}$随主族VIA非金属掺杂元素X (= O, S, Se, Te)的变化; (d) NT-X的平均键长$\bar{d}$随第二周期非金属掺杂元素X (= B, C, N, O, F)的变化

    Fig. 2.  (a) Formation energy and binding energy versus doped non-metal elements in group VIA for NT-X (X = O, S, Se, Te); (b) formation energy and binding energy versus doped non-metal elements in second period for NT-X (= B, C, N, O, F); (c) averaged bond length $\bar{d}$ versus doped non-metal elements in group VIA for NT-X (X = O, S, Se, Te); (d) average bond length $\bar{d}$ versus doped non-metal elements in second period for NT-X (= B, C, N, O, F).

    图 3  (a)—(e) B, C, P, O, F掺杂纳米管优化后的几何结构; (f)—(j) B, C, P, O, F掺杂纳米管淬火后的几何结构

    Fig. 3.  (a)–(e) Optimized geometry of B, C, P, O and F doped nanotubes; (f)–(j) geometry of B, C, P, O and F doped nanotubes after annealing simulations.

    图 4  (a) 主族VIA非金属元素掺杂的纳米管NT-X (X = O, S, Se, Te)的电荷转移; (b) 第二周期非金属元素掺杂的纳米管NT-X (X = B, C, N, O, F)的电荷转移. 掺杂纳米管的电荷差密度 (c) NT-B; (d) NT-C; (e) NT-P; (f) NT-O; (g) NT-F. 青色表示失去电子, 洋红色表示得到电子, 等值面为0.01e3

    Fig. 4.  (a) Charge transfer of group VIA non-metal elements doped NT-X (X = B, C, N, O, F); (b) charge transfer of second period non-metal elements doped NT-X (X = O, S, Se, Te). Charge difference density of doped nanotubes: (c) NT-B; (d) NT-C; (e) NT-P; (f) NT-O; (g) NT-F. Cyan indicates loss of electrons and magenta indicates gain of electrons, and the isosurface is set to 0.01e3.

    图 5  部分NT-X的能带图以及投影态密度图, 左侧为指定子带的部分电荷密度, 虚线框内为掺杂原子的位置 (a) NT-B; (b) NT-C; (c) NT-P; (d) NT-O; (e) NT-F; (f) NT-X的带隙

    Fig. 5.  The band structure and projected density of states for part of NT-X, the left panel is the partial charge density for designated subbands, and the position of doped atom is shown in the dotted circle: (a) NT-B; (b) NT-C; (c) NT-P; (d) NT-O; (e) NT-F; (f) the band gap for these NT-X.

    图 6  (a) 半导体性纳米管NT-X (X = B, N, P, As, F, Cl, Br, I)的有效质量m*; (b) NT-X的变形势常数|E1|和拉伸模量C; (c) NT-X的载流子迁移率

    Fig. 6.  (a) Effective mass m* of semiconducting nanotubes NT-X (X = B, N, P, As, F, Cl, Br, I); (b) deformation potential constant | E1 | and tensile modulus C of NT-X; (c) carrier mobility of NT-X.

    图 7  (a) NT-P外加栅极电压示意图; (b) 不同栅极电压下NT-P中杂质原子P的电荷转移; (c) 不同栅极电压下NT-P的CBM和VBM的变化; (d) NT-P的有效质量m*随栅极电压的变化; (e) NT-P的变形势常数|E1|和拉伸模量C随栅极电压的变化; (f) NT-P的载流子迁移率随栅极电压的变化

    Fig. 7.  (a) The schematic of applied gate voltage on NT-P; (b) electron transfer of hero-atom P in NT-P versus different gate voltages; (c) changes of CBM and VBM under different gate voltages on NT-P; (d) the effective mass m* of NT-P varies with the gate voltage; (e) variation of deformation potential constant |E1| and tensile modulus C of NT-P with gate voltage; (f) the carrier mobility of NT-P varies with the gate voltage.

    表 1  掺杂纳米管NT-X的结合能EB及化学形成能EF, 键长di (i = 1, 2, 3)及平均键长$\bar{d}$, 电荷转移ΔQ(|e|)(负号表示失去电子), 带隙Eg和电子相EP(金属-M, 半导体-S)

    Table 1.  Binding energy EB, formation energy EF, bond length di (i = 1, 2, 3) and averaged bond length $\bar{d}$, charge transfer ΔQ (|e|) (negative sign indicates a loss of electrons), band gap Eg, electronic phase EP (metal-M, semiconductor-S) for the doped nanotubes NT-X.

    Doped atomEB/(eV· atom–1)EF/(eV· atom–1)d1d2d3$\bar{d}$/ÅΔQEg/eVEP
    IIIAB–5.240.112.052.052.042.05+0.080.5S
    IVAC–5.310.051.911.931.931.92+0.4690M
    Si–5.250.112.412.412.402.41–0.2850M
    VAN–5.3601.881.871.871.87+0.6212.18S
    P–5.290.072.342.342.302.33+0.1482.17S
    As–5.270.082.442.442.392.42–0.1862.14S
    VIAO–5.310.041.951.961.941.95+0.6360M
    S–5.250.112.362.372.342.36+0.1790M
    Se–5.210.122.612.612.392.54+0.0910M
    Te–5.210.142.862.842.612.77–0.0820M
    VIIAF–5.250.102.542.761.862.39+0.3672.29S
    Cl–5.200.143.632.223.333.06+0.2652.25S
    Br–5.200.153.343.382.393.04+0.1542.27S
    I–5.190.163.852.573.473.30+0.0762.24S
    下载: 导出CSV
  • [1]

    Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60Google Scholar

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. 102 10451Google Scholar

    [3]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [4]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [5]

    Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [6]

    Tran V, Soklaski R, Liang Y F, Yang L 2014 Phys. Rev. B 89 817

    [7]

    Huang H, Jiang B, Zou X M, Zhao X Z, Liao L 2019 Sci. Bull. 64 1067Google Scholar

    [8]

    Castellanos-Gomez A, Vicarelli L, Prada E, Island J O, Narasimha-Acharya K L, Blanter S I, Groenendijk D J, Buscema M, Steele G A, Alvarez J V, Zandbergen H W, Palacios J J, van der Zant H S J 2014 2D Mater. 1 025001

    [9]

    Radisavljevic B, Kis A 2013 Nat. Mater. 12 815Google Scholar

    [10]

    Tareen A K, Khan K, Aslam M, Liu X K, Zhang H 2021 Prog. Solid. State Chem. 61 100294Google Scholar

    [11]

    Khan K, Tareen A K, Aslam M, Wang R H, Zhang Y P, Mahmood A, Ouyang Z B, Zhang H, Guo Z Y 2020 J. Mater. Chem. C 8 387Google Scholar

    [12]

    Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223Google Scholar

    [13]

    Camacho-Mojica D C, López-Urías F 2015 Sci. Rep. 5 17902

    [14]

    Al Balushi Z Y, Wang Ke, Ghosh R K, Vilá R A, Eichfeld S M, Caldwell J D, Qin X Y, Lin Y C, DeSario P A, Stone G, Subramanian S, Paul D F, Wallace R M, Datta S, Redwing J M, Robinson J A 2016 Nat. Mater. 15 1166Google Scholar

    [15]

    Chen Y X, Liu K L, Liu J X, Lv T R, Wei B, Zhang T, Zeng M Q, Wang Z C, Fu L 2018 J. Am. Chem. Soc. 140 16392Google Scholar

    [16]

    Meng X S, Liu H L, Lin L K, Cheng Y B, Hou X, Zhao S Y, Lu H M, Meng X K 2021 Appl. Surf. Sci. 539 148302Google Scholar

    [17]

    Li S, Xing H Z, Xie R K, ZengY J, Huang Y, Lu A J, Chen X S 2018 Physica E 97 144Google Scholar

    [18]

    Alaal N, Roqan I S 2020 ACS Omega 5 1261Google Scholar

    [19]

    Kadioglu Y, Ersan F, Kecik D, Akturk O U, Akturk E, Ciraci S 2018 Phys. Chem. Chem. Phys. 20 16077Google Scholar

    [20]

    Maier K, Helwig A, Muller G, Hille P, Teubert J, Eickhoff M 2017 Nano Lett. 17 615Google Scholar

    [21]

    Kong Y K, Liu L, Xia S H, Wang H G, Wang M S 2016 Comput. Theor. Chem. 1092 19Google Scholar

    [22]

    Goldberger J, He R, Zhang Y F, Lee S, Yan H Q, Choi H J, Yang P D 2003 Nature 34 599

    [23]

    Hemmingsson C, Pozina G, Khromov S, Monemar B 2011 Nanotechnology 22 085602Google Scholar

    [24]

    Ribeiro C C, de Jesus Gomes Varela J, Guerini S 2018 J. Mol. Model 24 192Google Scholar

    [25]

    Yang M, Shi J J, Zhang M, Zhang S, Bao Z Q, Luo S J, Zhou T C, Zhu T C, Li X, Li J 2013 Mater. Chem. Phys. 138 225Google Scholar

    [26]

    Moradian R, Azadi S, Farahani S V 2008 Phys. Lett. A 372 6935Google Scholar

    [27]

    Kuang W, Hu R, Fan Z Q, Zhang Z H 2019 Nanotechnology 30 145201Google Scholar

    [28]

    Han J N, Zhang Z H, Fan Z Q, Zhou R L 2020 Nanotechnology 31 315206Google Scholar

    [29]

    Hu R, Wang D, Fan Z Q, Zhang Z H 2018 Phys. Chem. Chem. Phys. 20 13574Google Scholar

    [30]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

    [31]

    Zhao T, Fan Z Q, Zhang Z H, Zhou R L 2019 J. Phys. D: Appl. Phys. 52 475301Google Scholar

    [32]

    Hu R, Li Y H, Zhang Z H, Fan Z Q, Sun L 2019 J. Mater. Chem. C 7 7745

    [33]

    Dong Q X, Hu R, Fan Z Q, Zhang Z H 2018 Carbon 130 206Google Scholar

    [34]

    Hu J K, Zhang Z H, Fan Z Q, Zhou R L 2019 Nanotechnology 30 485703Google Scholar

    [35]

    Han J N, He X, Fan Z Q, Zhang Z H 2019 Phys. Chem. Chem. Phys. 21 1830Google Scholar

    [36]

    Yuan P F, Hu R, Fan Z Q, Zhang Z H 2018 J. Phys.: Condens. Matter 30 445802Google Scholar

    [37]

    Ma Y D, Dai Y, Guo M, Niu C W, Yu L, Huang B B 2011 Nanoscale 3 2301Google Scholar

    [38]

    Bardeen J, Shockley W 1950 Phys. Rev. 80 72Google Scholar

    [39]

    Long M Q, Tang L, Wang D, Wang L J, Shuai Z G 2009 J. Am. Chem. Soc. 131 17728Google Scholar

    [40]

    Yuan P F, Fan Z Q, Zhang Z H 2017 Carbon 124 228Google Scholar

  • [1] 陆康俊, 王一帆, 夏谦, 张贵涛, 陈乾. 结构相变引起单层RuSe2载流子迁移率的提高. 物理学报, 2024, 73(14): 146302. doi: 10.7498/aps.73.20240557
    [2] 潘佳萍, 张冶文, 李俊, 吕天华, 郑飞虎. 结合电子束辐照与压电压力波法空间电荷分布实时测量的空间电荷包迁移行为的研究. 物理学报, 2024, 73(2): 027701. doi: 10.7498/aps.73.20231353
    [3] 李景辉, 曹胜果, 韩佳凝, 李占海, 张振华. 边修饰GeS2纳米带的电子特性及调控效应. 物理学报, 2024, 73(5): 056102. doi: 10.7498/aps.73.20231670
    [4] 王颂文, 郭红霞, 马腾, 雷志锋, 马武英, 钟向丽, 张鸿, 卢小杰, 李济芳, 方俊霖, 曾天祥. 石墨烯场效应晶体管在不同偏置电压条件下的电应力可靠性研究. 物理学报, 2024, 73(23): . doi: 10.7498/aps.20241365
    [5] 王颂文, 郭红霞, 马腾, 雷志锋, 马武英, 钟向丽, 张鸿, 卢小杰, 李济芳, 方俊霖, 曾天祥. 石墨烯场效应晶体管在不同偏置电压条件下的电应力可靠性. 物理学报, 2024, 73(23): 238501. doi: 10.7498/aps.73.20241365
    [6] 曹胜果, 韩佳凝, 李占海, 张振华. 扶手椅型C3B纳米带: 结构稳定性、电子特性及调控效应. 物理学报, 2023, 72(11): 117101. doi: 10.7498/aps.72.20222434
    [7] 韩佳凝, 黄俊铭, 曹胜果, 李占海, 张振华. 非金属原子掺杂扶手椅型砷烯纳米管的磁电子性质及调控. 物理学报, 2023, 72(19): 197101. doi: 10.7498/aps.72.20230644
    [8] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究. 物理学报, 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [9] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [10] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型. 物理学报, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [11] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [12] 郝蕊静, 郭红霞, 潘霄宇, 吕玲, 雷志锋, 李波, 钟向丽, 欧阳晓平, 董世剑. AlGaN/GaN高电子迁移率晶体管器件中子位移损伤效应及机理. 物理学报, 2020, 69(20): 207301. doi: 10.7498/aps.69.20200714
    [13] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [14] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [15] 陈航宇, 宋建军, 张洁, 胡辉勇, 张鹤鸣. 小尺寸单轴应变Si PMOS沟道晶面/晶向选择实验新发现. 物理学报, 2018, 67(6): 068501. doi: 10.7498/aps.67.20172138
    [16] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理. 物理学报, 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [17] 余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生. 新型双异质结高电子迁移率晶体管的电流崩塌效应研究. 物理学报, 2012, 61(20): 207301. doi: 10.7498/aps.61.207301
    [18] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型. 物理学报, 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [19] 顾江, 王强, 鲁宏. AlGaN/GaN 高速电子迁移率晶体管器件电流坍塌效应与界面热阻和温度的研究. 物理学报, 2011, 60(7): 077107. doi: 10.7498/aps.60.077107
    [20] 李志锋, 陆 卫, 叶红娟, 袁先璋, 沈学础, G.Li, S.J.Chua. GaN载流子浓度和迁移率的光谱研究. 物理学报, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
计量
  • 文章访问数:  5332
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-18
  • 修回日期:  2022-02-16
  • 上网日期:  2022-03-04
  • 刊出日期:  2022-06-05

/

返回文章
返回