搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双配体策略制备大气环境下性能稳定的CsPbIBr2光电探测器

胡紫婷 舒鑫 王香 李跃 徐闰 洪峰 马忠权 蒋最敏 徐飞

引用本文:
Citation:

双配体策略制备大气环境下性能稳定的CsPbIBr2光电探测器

胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞

Air-stable CsPbIBr2 photodetector via dual-ligand-assisted solution strategy

Hu Zi-Ting, Shu Xin, Wang Xiang, Li Yue, Xu Run, Hong Feng, Ma Zhong-Quan, Jiang Zui-Min, Xu Fei
PDF
HTML
导出引用
  • 大气环境下溶液法制备的CsPbIBr2钙钛矿薄膜存在薄膜覆盖率低、结晶度差和性能不稳定性等问题. 为此, 本文提出了一种双配体(卵磷脂(L-α-phosphatidylcholine, LP)和硫氰酸铵(NH4SCN))策略, 可在相对湿度不高于60%的大气环境下, 利用喷涂法制备出高结晶质量、结构稳定的钙钛矿薄膜. 这是由于卵磷脂能够有效降低钙钛矿前驱体溶液的表面张力, 提高CsPbIBr2钙钛矿薄膜的覆盖率, 并在CsPbIBr2钙钛矿薄膜表面形成一层隔绝水氧的保护层; 但同时也会减小晶粒尺寸, 形成大量的晶界, 造成载流子传输不利. 而NH4SCN能够克服卵磷脂的不足, 增大晶粒尺寸, 提高钙钛矿材料的电学特性. 这样, 制备出的未封装CsPbIBr2钙钛矿光电探测器(ITO/CsPbIBr2/Au)具有低暗电流密度 (2×10–4 mA·cm–2)、微秒级别的响应时间(20, 21 µs)和长效稳定性(在相对湿度为40%—60%的大气环境下, 储存70天后, 仍能保持原光暗电流初始值的81%)等特性.
    The CsPbIBr2 perovskite films deposited from the precursor solutions in air, usually suffer poor surface coverage and air-stability due to the uncontrolled nucleation and the existence of I during the film formation, resulting in terrible photoelectric characteristics and reproducibility. At present, the high-quality CsPbIBr2 films are prepared under nitrogen atmosphere, which results in the increase of the cost and thus impedes their applications in air. Here in this work, we propose a strategy for growing the perovskite films with low defect density and better stability in air via dual-ligand-assisted (ligand 1 (LP) and ligand 2 (NH4SCN)) solution strategy. These ligands contain some organic molecules which have strong interaction with ions on the surface of perovskite thin film in order to regulate the addition of precursor ions onto the films. The high-quality CsPbIBr2 thin films are prepared in air with relative humidity of ≤60% by the spraying method. The results indicate that ligand 1 with hydrophilic group and hydrophobic group, a kind of surfactant, can effectively reduce the surface tension of perovskite precursor solution, improve the coverage of CsPbIBr2 perovskite film, and form a block layer of water and oxygen. However, the addition of ligand 1 in precursor solution inevitably introduces many grain boundaries, which is unfavorable for carrier transport and collection. Thus, ligand 2 is employed to control the nucleation of perovskite film as another ligand, resulting in reducing the point defect formation. Their combination is beneficial to forming the uniform perovskite film with large-size crystal and low-density defect. The high-quality crystallization of the perovskite film is found to simultaneously enhance the response and the durability of photodetectors. Thus, the unpackaged photodetectors (ITO/CsPbIBr2/Au) based on this strategy yield the outstanding photoelectric response under the excitation of 405 nm laser. This device exhibits a low dark current density of 2 × 10–4 mA/cm2, a fast response time of 20–21 µs, and high stability (81%, ≥70 d) in air with a relative humidity of 40%–60%. Hence, this study provides a simple method to prepare high-quality CsPbIBr2 perovskite thin films with low-density defect and realize air-stable and charge-transport-layer-free CsPbIBr2 photodetectors for practical applications in photoelectric detection field.
      通信作者: 徐飞, feixu@staff.shu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175131, 61874070)和上海市自然科学基金(批准号: 17ZR1409600)资助的课题
      Corresponding author: Xu Fei, feixu@staff.shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175131, 61874070) and the Natural Science Foundation of Shanghai of China (Grant No. 17ZR1409600)
    [1]

    Liu X, Liu Z, Li J, Tan X, Sun B, Fang H, Xi S, Shi T, Tang Z, Liao G 2020 J. Mater. Chem. C 8 3337Google Scholar

    [2]

    Zhang T, Wang F, Zhang P, Wang Y, Chen H, Li J, Wu J, Chen L, Chen Z D, Li S 2019 Nanoscale 11 2871Google Scholar

    [3]

    Ou Z, Yi Y, Hu Z, Zhu J, Wang W, Meng H, Zhang X, Jing S, Xu S, Hong F, Huang J, Qin J, Xu F, Xu R, Zhu Y, Wang L 2020 J. Alloys Compd. 821 153344Google Scholar

    [4]

    Cen G, Liu Y, Zhao C, Wang G, Fu Y, Yan G, Yuan Y, Su C, Zhao Z, Mai W 2019 Small 15 1902135Google Scholar

    [5]

    Zhu W, Deng M, Zhang Z, Chen D, Xi H, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Inter. 11 22543Google Scholar

    [6]

    Wang Y, Yang F, Li X, Ru F, Liu P, Wang L, Ji W, Xia J, Meng X 2019 Adv. Funct. Mater. 29 1904913Google Scholar

    [7]

    Tang M, He B, Dou D, Liu Y, Duan J, Zhao Y, Chen H, Tang Q 2019 Chem. Eng. J. 375 121930Google Scholar

    [8]

    Zhang Z, Zhang W, Jiang Q, Wei Z, Zhang Y, You H L, Deng M, Zhu W, Zhang J, Zhang C, Hao Y 2020 IEEE Electr. Device. L 41 1532Google Scholar

    [9]

    Chen G, Feng J, Gao H, Zhao Y, Pi Y, Jiang X, Wu Y, Jiang L 2019 Adv. Funct. Mater. 29 1808741Google Scholar

    [10]

    Li Y W, Wang X, Li G W, Wu Y, Pan Y Z, Xu Y B, Chen J, Lei W 2020 Chin. Phys. Lett. 37 018101Google Scholar

    [11]

    Zhang Z, Zhang W, Jiang Q, Wei Z, Deng M, Chen D, Zhu W, Zhang J, You H 2020 ACS Appl. Mater. Inter. 12 6607Google Scholar

    [12]

    Du J, Duan J, Yang X, Zhou Q, Duan Y, Zhang T, Tang Q 2021 J. Energy Chem. 61 163Google Scholar

    [13]

    Zhang T, Li S 2021 Nanoscale Res. Lett. 16 6Google Scholar

    [14]

    Eze V O, Adams G R, Braga Carani L, Simpson R J, Okoli O I 2020 J. Phys. Chem. C 124 20643Google Scholar

    [15]

    Zhang Z Y L, Zhang W T, Wei Z M, Jiang Q B, Deng M Y, Chai W M, Zhu W D, Zhang C F, You H L, Zhang J 2020 Sol. Energy 209 371Google Scholar

    [16]

    Lu J, Chen S C, Zheng Q 2018 ACS Appl. Energy Mater. 1 5872Google Scholar

    [17]

    Wang H, Cao S, Yang B, Li H, Wang M, Hu X, Sun K, Zang Z 2019 Sol. RRL 4 1900363

    [18]

    Sun H, Yu L, Yuan H, Zhang J, Gan X, Hu Z, Zhu Y 2020 Electrochim. Acta 349 136162Google Scholar

    [19]

    Guo Y, Zhao F, Li Z, Tao J, Zheng D, Jiang J, Chu J 2020 Org. Electron. 83 105731Google Scholar

    [20]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [21]

    Zhang H, Nazeeruddin M K, Choy W C H 2019 Adv. Mater. 31 1805702Google Scholar

    [22]

    Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar

    [23]

    Liu Z, Liu D, Chen H, Ji L, Zheng H, Gu Y, Wang F, Chen Z, Li S 2019 Nanoscale Res. Lett. 14 304Google Scholar

    [24]

    Wang D, Li W, Du Z, Li G, Sun W, Wu J, Lan Z 2020 ACS Appl. Mater. Interf. 12 10579Google Scholar

    [25]

    Liu H, Zhang P, Wang F, Jia C, Chen Y 2020 Sol. Energy 198 335Google Scholar

    [26]

    Wang X, Ran X, Liu X, Gu H, Zuo S, Hui W, Lu H, Sun B, Gao X, Zhang J, Xia Y, Chen Y, Huang W 2020 Angew. Chem. Int. Ed. 59 13354Google Scholar

    [27]

    Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar

    [28]

    Uličná S, Dou B, Kim D H, Zhu K, Walls J M, Bowers J W, van Hest M F A M 2018 ACS Appl. Energy Mater. 1 1853Google Scholar

    [29]

    Zhu W, Zhang Z, Chai W, Chen D, Xi H, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Energy Mater. 2 5254Google Scholar

    [30]

    Zhang Q, Zhu W, Chen D, Zhang Z, Lin Z, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Interf. 11 2997Google Scholar

    [31]

    Huang Y, Zhang L, Wang J, Chu X, Zhang D, Zhao X, Li X, Xin L, Zhao Y, Zhao F 2019 JAllC 802 70

    [32]

    Cui D, Tian C, Wang Y, Wang F, Yang Z, Mei J, Liu H, Zhao D 2019 AIP Adv. 9 125039Google Scholar

    [33]

    Yang Z, Xu Q, Wang X, Lu J, Wang H, Li F, Zhang L, Hu G, Pan C 2018 Adv. Mater. 30 1802110Google Scholar

    [34]

    Yang Z, Wang M, Qiu H, Yao X, Lao X, Xu S, Lin Z, Sun L, Shao J 2018 Adv. Funct. Mater. 28 1705908Google Scholar

    [35]

    Tong G, Li H, Li D, Zhu Z, Xu E, Li G, Yu L, Xu J, Jiang Y 2018 Small 14 1702523Google Scholar

    [36]

    Pang L, Yao Y, Wang Q, Zhang X, Jin Z, Liu S F 2018 Part. Part. Syst. Character. 35 1700363Google Scholar

    [37]

    Yang B, Zhang F, Chen J, Yang S, Xia X, Pullerits T, Deng W, Han K 2017 Adv. Mater. 29 1703758Google Scholar

    [38]

    Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S, Lee J S 2016 ChCom 52 2067Google Scholar

    [39]

    Li X L, Liu Z, Peng L Z, Liu X Q, Wang N, Zhao Y, Zheng J, Zuo Y H, Xue C L, Cheng B W 2020 Chin. Phys. Lett. 37 038503Google Scholar

    [40]

    Yan X, Zhen W L, Hu H J, Pi L, Zhang C J, Zhu W K 2021 Chin. Phys. Lett. 38 068103Google Scholar

    [41]

    Li C, Wang H, Wang F, Li T, Xu M, Wang H, Wang Z, Zhan X, Hu W, Shen L 2020 Light Sci. Appl. 9 31Google Scholar

  • 图 1  添加不同浓度的两种配体材料的CsPbIBr2 薄膜的SEM形貌图 (a) 添加不同体积比的LP配体; (b) 添加不同浓度的NH4SCN配体; (c) 固定LP配体体积浓度为10%, 增加NH4SCN配体浓度

    Fig. 1.  Top-view SEM images of CsPbIBr2 film with two ligands at different concentrations: (a) Adding different volume ratios of LP ligands; (b) adding different concentrations of NH4SCN ligands; (c) fix the LP ligand volume concentration to 10%, add the NH4SCN ligand concentration.

    图 2  含有不同浓度的两种配体材料的CsPbIBr2 薄膜的AFM形貌图

    Fig. 2.  AFM images of CsPbIBr2 film with two ligands at different concentrations.

    图 3  含有两种配体材料的CsPbIBr2 薄膜的XRD和XPS图 (a) XRD; (b) XPS

    Fig. 3.  XRD and XPS patterns of CsPbIBr2 thin films containing two ligand materials: (a) XRD; (b) XPS.

    图 4  含有两种配体的 CsPbIBr2 薄膜的稳态 PL 光谱和紫外-可见吸收光谱 (a) Control, Eg = 2.1 eV; (b) L1, Eg = 2.09 eV; (c) L2, Eg = 2.1 eV; (d) L1+L2, Eg = 2.09 eV

    Fig. 4.  Steady-state PL and UV-Vis absorption spectra of CsPbIBr2 film with two ligands: (a) Control, Eg = 2.1 eV; (b) L1, Eg = 2.09 eV; (c) L2, Eg = 2.1 eV; (d) L1+L2, Eg = 2.09 eV.

    图 5  (a) Au/CsPbIBr2/ITO器件结构和能带图; (b) 含有两种配体材料的CsPbIBr2 薄膜器件在黑暗条件和405 nm激光下的J-V曲线; (c) L1+ L2组器件在50 Hz下的时间响应和该组器件线光电流和响应率随入射光功率变化关系图

    Fig. 5.  (a) Device structure and band diagram of Au/CsPbIBr2/ITO detector; (b) J-V characteristics of the film with different ligands-based photodetector under dark and 405 nm laser conditions; (c) the time response of the L1+ L2 group of devices at 50 Hz, and the relationship between the line photocurrent and responsivity of the devices with incident light power.

    图 6  (a) 含有两种配体材料的CsPbIBr2 薄膜形貌随时间变化图; (b) 含有两种配体材料的CsPbIBr2 薄膜器件在大气环境下的电学稳定性测试

    Fig. 6.  (a) The changes of morphology of CsPbIBr2 film with two ligands with time; (b) stability tests of the CsPbIBr2 film with two ligands-based photodetectors stored in ambient air.

    表 1  采用双配体策略的无机 CsPbIBr2 薄膜光电探测器与其他CsPbIBr2探测器的性能比较

    Table 1.  Performance comparisons of inorganic CsPbIBr2 photodetector using dual ligand with other reports.

    器件结构方法配体环境
    偏压
    /V
    响应时间
    /μs
    暗电流
    /(10–9 A)
    开光比稳定性文献
    Au/CsPbIBr2/ITO旋涂DEN20.1320, 2302.00103[10]
    Au/CsPbIBr2/FTO旋涂TAair, 10% RH3900, 560010582%, 56 d
    (air, 30% RH)
    [9]
    Carbon/CsPbIBr2/Ga2O3/TiO2/FTO旋涂N201.834.15[1]
    Carbon/CsPbIBr2/FTO旋涂PEIN201.212.03[8]
    Au/Spiro/CsPbIBr2/TiO2/ITO旋涂AgI2N2022.4, 25.7582.00[11]
    Au/CsPbIBr2/ITO喷涂LP+
    NH4SCN
    air, 60% RH–520, 211.6010281%, 70 d
    (air, 40%—60% RH)
    This work
    下载: 导出CSV
  • [1]

    Liu X, Liu Z, Li J, Tan X, Sun B, Fang H, Xi S, Shi T, Tang Z, Liao G 2020 J. Mater. Chem. C 8 3337Google Scholar

    [2]

    Zhang T, Wang F, Zhang P, Wang Y, Chen H, Li J, Wu J, Chen L, Chen Z D, Li S 2019 Nanoscale 11 2871Google Scholar

    [3]

    Ou Z, Yi Y, Hu Z, Zhu J, Wang W, Meng H, Zhang X, Jing S, Xu S, Hong F, Huang J, Qin J, Xu F, Xu R, Zhu Y, Wang L 2020 J. Alloys Compd. 821 153344Google Scholar

    [4]

    Cen G, Liu Y, Zhao C, Wang G, Fu Y, Yan G, Yuan Y, Su C, Zhao Z, Mai W 2019 Small 15 1902135Google Scholar

    [5]

    Zhu W, Deng M, Zhang Z, Chen D, Xi H, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Inter. 11 22543Google Scholar

    [6]

    Wang Y, Yang F, Li X, Ru F, Liu P, Wang L, Ji W, Xia J, Meng X 2019 Adv. Funct. Mater. 29 1904913Google Scholar

    [7]

    Tang M, He B, Dou D, Liu Y, Duan J, Zhao Y, Chen H, Tang Q 2019 Chem. Eng. J. 375 121930Google Scholar

    [8]

    Zhang Z, Zhang W, Jiang Q, Wei Z, Zhang Y, You H L, Deng M, Zhu W, Zhang J, Zhang C, Hao Y 2020 IEEE Electr. Device. L 41 1532Google Scholar

    [9]

    Chen G, Feng J, Gao H, Zhao Y, Pi Y, Jiang X, Wu Y, Jiang L 2019 Adv. Funct. Mater. 29 1808741Google Scholar

    [10]

    Li Y W, Wang X, Li G W, Wu Y, Pan Y Z, Xu Y B, Chen J, Lei W 2020 Chin. Phys. Lett. 37 018101Google Scholar

    [11]

    Zhang Z, Zhang W, Jiang Q, Wei Z, Deng M, Chen D, Zhu W, Zhang J, You H 2020 ACS Appl. Mater. Inter. 12 6607Google Scholar

    [12]

    Du J, Duan J, Yang X, Zhou Q, Duan Y, Zhang T, Tang Q 2021 J. Energy Chem. 61 163Google Scholar

    [13]

    Zhang T, Li S 2021 Nanoscale Res. Lett. 16 6Google Scholar

    [14]

    Eze V O, Adams G R, Braga Carani L, Simpson R J, Okoli O I 2020 J. Phys. Chem. C 124 20643Google Scholar

    [15]

    Zhang Z Y L, Zhang W T, Wei Z M, Jiang Q B, Deng M Y, Chai W M, Zhu W D, Zhang C F, You H L, Zhang J 2020 Sol. Energy 209 371Google Scholar

    [16]

    Lu J, Chen S C, Zheng Q 2018 ACS Appl. Energy Mater. 1 5872Google Scholar

    [17]

    Wang H, Cao S, Yang B, Li H, Wang M, Hu X, Sun K, Zang Z 2019 Sol. RRL 4 1900363

    [18]

    Sun H, Yu L, Yuan H, Zhang J, Gan X, Hu Z, Zhu Y 2020 Electrochim. Acta 349 136162Google Scholar

    [19]

    Guo Y, Zhao F, Li Z, Tao J, Zheng D, Jiang J, Chu J 2020 Org. Electron. 83 105731Google Scholar

    [20]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [21]

    Zhang H, Nazeeruddin M K, Choy W C H 2019 Adv. Mater. 31 1805702Google Scholar

    [22]

    Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar

    [23]

    Liu Z, Liu D, Chen H, Ji L, Zheng H, Gu Y, Wang F, Chen Z, Li S 2019 Nanoscale Res. Lett. 14 304Google Scholar

    [24]

    Wang D, Li W, Du Z, Li G, Sun W, Wu J, Lan Z 2020 ACS Appl. Mater. Interf. 12 10579Google Scholar

    [25]

    Liu H, Zhang P, Wang F, Jia C, Chen Y 2020 Sol. Energy 198 335Google Scholar

    [26]

    Wang X, Ran X, Liu X, Gu H, Zuo S, Hui W, Lu H, Sun B, Gao X, Zhang J, Xia Y, Chen Y, Huang W 2020 Angew. Chem. Int. Ed. 59 13354Google Scholar

    [27]

    Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar

    [28]

    Uličná S, Dou B, Kim D H, Zhu K, Walls J M, Bowers J W, van Hest M F A M 2018 ACS Appl. Energy Mater. 1 1853Google Scholar

    [29]

    Zhu W, Zhang Z, Chai W, Chen D, Xi H, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Energy Mater. 2 5254Google Scholar

    [30]

    Zhang Q, Zhu W, Chen D, Zhang Z, Lin Z, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Interf. 11 2997Google Scholar

    [31]

    Huang Y, Zhang L, Wang J, Chu X, Zhang D, Zhao X, Li X, Xin L, Zhao Y, Zhao F 2019 JAllC 802 70

    [32]

    Cui D, Tian C, Wang Y, Wang F, Yang Z, Mei J, Liu H, Zhao D 2019 AIP Adv. 9 125039Google Scholar

    [33]

    Yang Z, Xu Q, Wang X, Lu J, Wang H, Li F, Zhang L, Hu G, Pan C 2018 Adv. Mater. 30 1802110Google Scholar

    [34]

    Yang Z, Wang M, Qiu H, Yao X, Lao X, Xu S, Lin Z, Sun L, Shao J 2018 Adv. Funct. Mater. 28 1705908Google Scholar

    [35]

    Tong G, Li H, Li D, Zhu Z, Xu E, Li G, Yu L, Xu J, Jiang Y 2018 Small 14 1702523Google Scholar

    [36]

    Pang L, Yao Y, Wang Q, Zhang X, Jin Z, Liu S F 2018 Part. Part. Syst. Character. 35 1700363Google Scholar

    [37]

    Yang B, Zhang F, Chen J, Yang S, Xia X, Pullerits T, Deng W, Han K 2017 Adv. Mater. 29 1703758Google Scholar

    [38]

    Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S, Lee J S 2016 ChCom 52 2067Google Scholar

    [39]

    Li X L, Liu Z, Peng L Z, Liu X Q, Wang N, Zhao Y, Zheng J, Zuo Y H, Xue C L, Cheng B W 2020 Chin. Phys. Lett. 37 038503Google Scholar

    [40]

    Yan X, Zhen W L, Hu H J, Pi L, Zhang C J, Zhu W K 2021 Chin. Phys. Lett. 38 068103Google Scholar

    [41]

    Li C, Wang H, Wang F, Li T, Xu M, Wang H, Wang Z, Zhan X, Hu W, Shen L 2020 Light Sci. Appl. 9 31Google Scholar

  • [1] 尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉. 0.1 mHz-1 Hz频段超低噪声光电探测器实验研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241635
    [2] 程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强. 具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器. 物理学报, 2024, 73(20): 208501. doi: 10.7498/aps.73.20241075
    [3] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [4] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [5] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [6] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能. 物理学报, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [7] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [8] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [9] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟. 醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能. 物理学报, 2022, 71(1): 018802. doi: 10.7498/aps.71.20211074
    [10] 孙雪, 黄锋, 刘桂雄, 苏子生. 纳米成核点辅助结晶对钙钛矿光电探测器性能的影响. 物理学报, 2022, 71(17): 178102. doi: 10.7498/aps.71.20220189
    [11] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [12] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [13] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [14] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [15] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [16] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [17] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [18] 尹伟红, 韩勤, 杨晓红. 基于石墨烯的半导体光电器件研究进展. 物理学报, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [19] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
    [20] 孙利群, 张彦鹏, 刘亚芳, 唐天同, 杨照金, 向世明. 自发参量下转换双光子场绝对校准光电探测器的方法研究. 物理学报, 2000, 49(4): 724-729. doi: 10.7498/aps.49.724
计量
  • 文章访问数:  5211
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-22
  • 修回日期:  2021-12-21
  • 上网日期:  2022-03-01
  • 刊出日期:  2022-06-05

/

返回文章
返回