-
大气环境下溶液法制备的CsPbIBr2钙钛矿薄膜存在薄膜覆盖率低、结晶度差和性能不稳定性等问题. 为此, 本文提出了一种双配体(卵磷脂(L-α-phosphatidylcholine, LP)和硫氰酸铵(NH4SCN))策略, 可在相对湿度不高于60%的大气环境下, 利用喷涂法制备出高结晶质量、结构稳定的钙钛矿薄膜. 这是由于卵磷脂能够有效降低钙钛矿前驱体溶液的表面张力, 提高CsPbIBr2钙钛矿薄膜的覆盖率, 并在CsPbIBr2钙钛矿薄膜表面形成一层隔绝水氧的保护层; 但同时也会减小晶粒尺寸, 形成大量的晶界, 造成载流子传输不利. 而NH4SCN能够克服卵磷脂的不足, 增大晶粒尺寸, 提高钙钛矿材料的电学特性. 这样, 制备出的未封装CsPbIBr2钙钛矿光电探测器(ITO/CsPbIBr2/Au)具有低暗电流密度 (2×10–4 mA·cm–2)、微秒级别的响应时间(20, 21 µs)和长效稳定性(在相对湿度为40%—60%的大气环境下, 储存70天后, 仍能保持原光暗电流初始值的81%)等特性.The CsPbIBr2 perovskite films deposited from the precursor solutions in air, usually suffer poor surface coverage and air-stability due to the uncontrolled nucleation and the existence of I– during the film formation, resulting in terrible photoelectric characteristics and reproducibility. At present, the high-quality CsPbIBr2 films are prepared under nitrogen atmosphere, which results in the increase of the cost and thus impedes their applications in air. Here in this work, we propose a strategy for growing the perovskite films with low defect density and better stability in air via dual-ligand-assisted (ligand 1 (LP) and ligand 2 (NH4SCN)) solution strategy. These ligands contain some organic molecules which have strong interaction with ions on the surface of perovskite thin film in order to regulate the addition of precursor ions onto the films. The high-quality CsPbIBr2 thin films are prepared in air with relative humidity of ≤60% by the spraying method. The results indicate that ligand 1 with hydrophilic group and hydrophobic group, a kind of surfactant, can effectively reduce the surface tension of perovskite precursor solution, improve the coverage of CsPbIBr2 perovskite film, and form a block layer of water and oxygen. However, the addition of ligand 1 in precursor solution inevitably introduces many grain boundaries, which is unfavorable for carrier transport and collection. Thus, ligand 2 is employed to control the nucleation of perovskite film as another ligand, resulting in reducing the point defect formation. Their combination is beneficial to forming the uniform perovskite film with large-size crystal and low-density defect. The high-quality crystallization of the perovskite film is found to simultaneously enhance the response and the durability of photodetectors. Thus, the unpackaged photodetectors (ITO/CsPbIBr2/Au) based on this strategy yield the outstanding photoelectric response under the excitation of 405 nm laser. This device exhibits a low dark current density of 2 × 10–4 mA/cm2, a fast response time of 20–21 µs, and high stability (81%, ≥70 d) in air with a relative humidity of 40%–60%. Hence, this study provides a simple method to prepare high-quality CsPbIBr2 perovskite thin films with low-density defect and realize air-stable and charge-transport-layer-free CsPbIBr2 photodetectors for practical applications in photoelectric detection field.
-
Keywords:
- dual ligand strategy /
- inorganic perovskite material /
- photodetector
[1] Liu X, Liu Z, Li J, Tan X, Sun B, Fang H, Xi S, Shi T, Tang Z, Liao G 2020 J. Mater. Chem. C 8 3337Google Scholar
[2] Zhang T, Wang F, Zhang P, Wang Y, Chen H, Li J, Wu J, Chen L, Chen Z D, Li S 2019 Nanoscale 11 2871Google Scholar
[3] Ou Z, Yi Y, Hu Z, Zhu J, Wang W, Meng H, Zhang X, Jing S, Xu S, Hong F, Huang J, Qin J, Xu F, Xu R, Zhu Y, Wang L 2020 J. Alloys Compd. 821 153344Google Scholar
[4] Cen G, Liu Y, Zhao C, Wang G, Fu Y, Yan G, Yuan Y, Su C, Zhao Z, Mai W 2019 Small 15 1902135Google Scholar
[5] Zhu W, Deng M, Zhang Z, Chen D, Xi H, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Inter. 11 22543Google Scholar
[6] Wang Y, Yang F, Li X, Ru F, Liu P, Wang L, Ji W, Xia J, Meng X 2019 Adv. Funct. Mater. 29 1904913Google Scholar
[7] Tang M, He B, Dou D, Liu Y, Duan J, Zhao Y, Chen H, Tang Q 2019 Chem. Eng. J. 375 121930Google Scholar
[8] Zhang Z, Zhang W, Jiang Q, Wei Z, Zhang Y, You H L, Deng M, Zhu W, Zhang J, Zhang C, Hao Y 2020 IEEE Electr. Device. L 41 1532Google Scholar
[9] Chen G, Feng J, Gao H, Zhao Y, Pi Y, Jiang X, Wu Y, Jiang L 2019 Adv. Funct. Mater. 29 1808741Google Scholar
[10] Li Y W, Wang X, Li G W, Wu Y, Pan Y Z, Xu Y B, Chen J, Lei W 2020 Chin. Phys. Lett. 37 018101Google Scholar
[11] Zhang Z, Zhang W, Jiang Q, Wei Z, Deng M, Chen D, Zhu W, Zhang J, You H 2020 ACS Appl. Mater. Inter. 12 6607Google Scholar
[12] Du J, Duan J, Yang X, Zhou Q, Duan Y, Zhang T, Tang Q 2021 J. Energy Chem. 61 163Google Scholar
[13] Zhang T, Li S 2021 Nanoscale Res. Lett. 16 6Google Scholar
[14] Eze V O, Adams G R, Braga Carani L, Simpson R J, Okoli O I 2020 J. Phys. Chem. C 124 20643Google Scholar
[15] Zhang Z Y L, Zhang W T, Wei Z M, Jiang Q B, Deng M Y, Chai W M, Zhu W D, Zhang C F, You H L, Zhang J 2020 Sol. Energy 209 371Google Scholar
[16] Lu J, Chen S C, Zheng Q 2018 ACS Appl. Energy Mater. 1 5872Google Scholar
[17] Wang H, Cao S, Yang B, Li H, Wang M, Hu X, Sun K, Zang Z 2019 Sol. RRL 4 1900363
[18] Sun H, Yu L, Yuan H, Zhang J, Gan X, Hu Z, Zhu Y 2020 Electrochim. Acta 349 136162Google Scholar
[19] Guo Y, Zhao F, Li Z, Tao J, Zheng D, Jiang J, Chu J 2020 Org. Electron. 83 105731Google Scholar
[20] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar
[21] Zhang H, Nazeeruddin M K, Choy W C H 2019 Adv. Mater. 31 1805702Google Scholar
[22] Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar
[23] Liu Z, Liu D, Chen H, Ji L, Zheng H, Gu Y, Wang F, Chen Z, Li S 2019 Nanoscale Res. Lett. 14 304Google Scholar
[24] Wang D, Li W, Du Z, Li G, Sun W, Wu J, Lan Z 2020 ACS Appl. Mater. Interf. 12 10579Google Scholar
[25] Liu H, Zhang P, Wang F, Jia C, Chen Y 2020 Sol. Energy 198 335Google Scholar
[26] Wang X, Ran X, Liu X, Gu H, Zuo S, Hui W, Lu H, Sun B, Gao X, Zhang J, Xia Y, Chen Y, Huang W 2020 Angew. Chem. Int. Ed. 59 13354Google Scholar
[27] Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar
[28] Uličná S, Dou B, Kim D H, Zhu K, Walls J M, Bowers J W, van Hest M F A M 2018 ACS Appl. Energy Mater. 1 1853Google Scholar
[29] Zhu W, Zhang Z, Chai W, Chen D, Xi H, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Energy Mater. 2 5254Google Scholar
[30] Zhang Q, Zhu W, Chen D, Zhang Z, Lin Z, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Interf. 11 2997Google Scholar
[31] Huang Y, Zhang L, Wang J, Chu X, Zhang D, Zhao X, Li X, Xin L, Zhao Y, Zhao F 2019 JAllC 802 70
[32] Cui D, Tian C, Wang Y, Wang F, Yang Z, Mei J, Liu H, Zhao D 2019 AIP Adv. 9 125039Google Scholar
[33] Yang Z, Xu Q, Wang X, Lu J, Wang H, Li F, Zhang L, Hu G, Pan C 2018 Adv. Mater. 30 1802110Google Scholar
[34] Yang Z, Wang M, Qiu H, Yao X, Lao X, Xu S, Lin Z, Sun L, Shao J 2018 Adv. Funct. Mater. 28 1705908Google Scholar
[35] Tong G, Li H, Li D, Zhu Z, Xu E, Li G, Yu L, Xu J, Jiang Y 2018 Small 14 1702523Google Scholar
[36] Pang L, Yao Y, Wang Q, Zhang X, Jin Z, Liu S F 2018 Part. Part. Syst. Character. 35 1700363Google Scholar
[37] Yang B, Zhang F, Chen J, Yang S, Xia X, Pullerits T, Deng W, Han K 2017 Adv. Mater. 29 1703758Google Scholar
[38] Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S, Lee J S 2016 ChCom 52 2067Google Scholar
[39] Li X L, Liu Z, Peng L Z, Liu X Q, Wang N, Zhao Y, Zheng J, Zuo Y H, Xue C L, Cheng B W 2020 Chin. Phys. Lett. 37 038503Google Scholar
[40] Yan X, Zhen W L, Hu H J, Pi L, Zhang C J, Zhu W K 2021 Chin. Phys. Lett. 38 068103Google Scholar
[41] Li C, Wang H, Wang F, Li T, Xu M, Wang H, Wang Z, Zhan X, Hu W, Shen L 2020 Light Sci. Appl. 9 31Google Scholar
-
图 1 添加不同浓度的两种配体材料的CsPbIBr2 薄膜的SEM形貌图 (a) 添加不同体积比的LP配体; (b) 添加不同浓度的NH4SCN配体; (c) 固定LP配体体积浓度为10%, 增加NH4SCN配体浓度
Fig. 1. Top-view SEM images of CsPbIBr2 film with two ligands at different concentrations: (a) Adding different volume ratios of LP ligands; (b) adding different concentrations of NH4SCN ligands; (c) fix the LP ligand volume concentration to 10%, add the NH4SCN ligand concentration.
图 4 含有两种配体的 CsPbIBr2 薄膜的稳态 PL 光谱和紫外-可见吸收光谱 (a) Control, Eg = 2.1 eV; (b) L1, Eg = 2.09 eV; (c) L2, Eg = 2.1 eV; (d) L1+L2, Eg = 2.09 eV
Fig. 4. Steady-state PL and UV-Vis absorption spectra of CsPbIBr2 film with two ligands: (a) Control, Eg = 2.1 eV; (b) L1, Eg = 2.09 eV; (c) L2, Eg = 2.1 eV; (d) L1+L2, Eg = 2.09 eV.
图 5 (a) Au/CsPbIBr2/ITO器件结构和能带图; (b) 含有两种配体材料的CsPbIBr2 薄膜器件在黑暗条件和405 nm激光下的J-V曲线; (c) L1+ L2组器件在50 Hz下的时间响应和该组器件线光电流和响应率随入射光功率变化关系图
Fig. 5. (a) Device structure and band diagram of Au/CsPbIBr2/ITO detector; (b) J-V characteristics of the film with different ligands-based photodetector under dark and 405 nm laser conditions; (c) the time response of the L1+ L2 group of devices at 50 Hz, and the relationship between the line photocurrent and responsivity of the devices with incident light power.
表 1 采用双配体策略的无机 CsPbIBr2 薄膜光电探测器与其他CsPbIBr2探测器的性能比较
Table 1. Performance comparisons of inorganic CsPbIBr2 photodetector using dual ligand with other reports.
器件结构 方法 配体 环境 偏压
/V响应时间
/μs暗电流
/(10–9 A)开光比 稳定性 文献 Au/CsPbIBr2/ITO 旋涂 DE N2 0.1 320, 230 2.00 103 — [10] Au/CsPbIBr2/FTO 旋涂 TA air, 10% RH — 3900, 5600 — 105 82%, 56 d
(air, 30% RH)[9] Carbon/CsPbIBr2/Ga2O3/TiO2/FTO 旋涂 — N2 0 1.83 4.15 — — [1] Carbon/CsPbIBr2/FTO 旋涂 PEI N2 0 1.21 2.03 — — [8] Au/Spiro/CsPbIBr2/TiO2/ITO 旋涂 AgI2 N2 0 22.4, 25.7 582.00 — — [11] Au/CsPbIBr2/ITO 喷涂 LP+
NH4SCNair, 60% RH –5 20, 21 1.60 102 81%, 70 d
(air, 40%—60% RH)This work -
[1] Liu X, Liu Z, Li J, Tan X, Sun B, Fang H, Xi S, Shi T, Tang Z, Liao G 2020 J. Mater. Chem. C 8 3337Google Scholar
[2] Zhang T, Wang F, Zhang P, Wang Y, Chen H, Li J, Wu J, Chen L, Chen Z D, Li S 2019 Nanoscale 11 2871Google Scholar
[3] Ou Z, Yi Y, Hu Z, Zhu J, Wang W, Meng H, Zhang X, Jing S, Xu S, Hong F, Huang J, Qin J, Xu F, Xu R, Zhu Y, Wang L 2020 J. Alloys Compd. 821 153344Google Scholar
[4] Cen G, Liu Y, Zhao C, Wang G, Fu Y, Yan G, Yuan Y, Su C, Zhao Z, Mai W 2019 Small 15 1902135Google Scholar
[5] Zhu W, Deng M, Zhang Z, Chen D, Xi H, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Inter. 11 22543Google Scholar
[6] Wang Y, Yang F, Li X, Ru F, Liu P, Wang L, Ji W, Xia J, Meng X 2019 Adv. Funct. Mater. 29 1904913Google Scholar
[7] Tang M, He B, Dou D, Liu Y, Duan J, Zhao Y, Chen H, Tang Q 2019 Chem. Eng. J. 375 121930Google Scholar
[8] Zhang Z, Zhang W, Jiang Q, Wei Z, Zhang Y, You H L, Deng M, Zhu W, Zhang J, Zhang C, Hao Y 2020 IEEE Electr. Device. L 41 1532Google Scholar
[9] Chen G, Feng J, Gao H, Zhao Y, Pi Y, Jiang X, Wu Y, Jiang L 2019 Adv. Funct. Mater. 29 1808741Google Scholar
[10] Li Y W, Wang X, Li G W, Wu Y, Pan Y Z, Xu Y B, Chen J, Lei W 2020 Chin. Phys. Lett. 37 018101Google Scholar
[11] Zhang Z, Zhang W, Jiang Q, Wei Z, Deng M, Chen D, Zhu W, Zhang J, You H 2020 ACS Appl. Mater. Inter. 12 6607Google Scholar
[12] Du J, Duan J, Yang X, Zhou Q, Duan Y, Zhang T, Tang Q 2021 J. Energy Chem. 61 163Google Scholar
[13] Zhang T, Li S 2021 Nanoscale Res. Lett. 16 6Google Scholar
[14] Eze V O, Adams G R, Braga Carani L, Simpson R J, Okoli O I 2020 J. Phys. Chem. C 124 20643Google Scholar
[15] Zhang Z Y L, Zhang W T, Wei Z M, Jiang Q B, Deng M Y, Chai W M, Zhu W D, Zhang C F, You H L, Zhang J 2020 Sol. Energy 209 371Google Scholar
[16] Lu J, Chen S C, Zheng Q 2018 ACS Appl. Energy Mater. 1 5872Google Scholar
[17] Wang H, Cao S, Yang B, Li H, Wang M, Hu X, Sun K, Zang Z 2019 Sol. RRL 4 1900363
[18] Sun H, Yu L, Yuan H, Zhang J, Gan X, Hu Z, Zhu Y 2020 Electrochim. Acta 349 136162Google Scholar
[19] Guo Y, Zhao F, Li Z, Tao J, Zheng D, Jiang J, Chu J 2020 Org. Electron. 83 105731Google Scholar
[20] Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar
[21] Zhang H, Nazeeruddin M K, Choy W C H 2019 Adv. Mater. 31 1805702Google Scholar
[22] Ke W, Xiao C, Wang C, Saparov B, Duan H S, Zhao D, Xiao Z, Schulz P, Harvey S P, Liao W, Meng W, Yu Y, Cimaroli A J, Jiang C S, Zhu K, Al-Jassim M, Fang G, Mitzi D B, Yan Y 2016 Adv. Mater. 28 5214Google Scholar
[23] Liu Z, Liu D, Chen H, Ji L, Zheng H, Gu Y, Wang F, Chen Z, Li S 2019 Nanoscale Res. Lett. 14 304Google Scholar
[24] Wang D, Li W, Du Z, Li G, Sun W, Wu J, Lan Z 2020 ACS Appl. Mater. Interf. 12 10579Google Scholar
[25] Liu H, Zhang P, Wang F, Jia C, Chen Y 2020 Sol. Energy 198 335Google Scholar
[26] Wang X, Ran X, Liu X, Gu H, Zuo S, Hui W, Lu H, Sun B, Gao X, Zhang J, Xia Y, Chen Y, Huang W 2020 Angew. Chem. Int. Ed. 59 13354Google Scholar
[27] Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J 2018 Nat. Energy 3 560Google Scholar
[28] Uličná S, Dou B, Kim D H, Zhu K, Walls J M, Bowers J W, van Hest M F A M 2018 ACS Appl. Energy Mater. 1 1853Google Scholar
[29] Zhu W, Zhang Z, Chai W, Chen D, Xi H, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Energy Mater. 2 5254Google Scholar
[30] Zhang Q, Zhu W, Chen D, Zhang Z, Lin Z, Chang J, Zhang J, Zhang C, Hao Y 2019 ACS Appl. Mater. Interf. 11 2997Google Scholar
[31] Huang Y, Zhang L, Wang J, Chu X, Zhang D, Zhao X, Li X, Xin L, Zhao Y, Zhao F 2019 JAllC 802 70
[32] Cui D, Tian C, Wang Y, Wang F, Yang Z, Mei J, Liu H, Zhao D 2019 AIP Adv. 9 125039Google Scholar
[33] Yang Z, Xu Q, Wang X, Lu J, Wang H, Li F, Zhang L, Hu G, Pan C 2018 Adv. Mater. 30 1802110Google Scholar
[34] Yang Z, Wang M, Qiu H, Yao X, Lao X, Xu S, Lin Z, Sun L, Shao J 2018 Adv. Funct. Mater. 28 1705908Google Scholar
[35] Tong G, Li H, Li D, Zhu Z, Xu E, Li G, Yu L, Xu J, Jiang Y 2018 Small 14 1702523Google Scholar
[36] Pang L, Yao Y, Wang Q, Zhang X, Jin Z, Liu S F 2018 Part. Part. Syst. Character. 35 1700363Google Scholar
[37] Yang B, Zhang F, Chen J, Yang S, Xia X, Pullerits T, Deng W, Han K 2017 Adv. Mater. 29 1703758Google Scholar
[38] Ramasamy P, Lim D H, Kim B, Lee S H, Lee M S, Lee J S 2016 ChCom 52 2067Google Scholar
[39] Li X L, Liu Z, Peng L Z, Liu X Q, Wang N, Zhao Y, Zheng J, Zuo Y H, Xue C L, Cheng B W 2020 Chin. Phys. Lett. 37 038503Google Scholar
[40] Yan X, Zhen W L, Hu H J, Pi L, Zhang C J, Zhu W K 2021 Chin. Phys. Lett. 38 068103Google Scholar
[41] Li C, Wang H, Wang F, Li T, Xu M, Wang H, Wang Z, Zhan X, Hu W, Shen L 2020 Light Sci. Appl. 9 31Google Scholar
计量
- 文章访问数: 5211
- PDF下载量: 84
- 被引次数: 0