搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于过渡金属硫族化合物同质结的光电探测器

舒衍涛 张有为 王顺

引用本文:
Citation:

基于过渡金属硫族化合物同质结的光电探测器

舒衍涛, 张有为, 王顺

Photodetectors based on homojunctions of transition metal dichalcogenides

Shu Yan-Tao, Zhang You-Wei, Wang Shun
PDF
HTML
导出引用
  • 近年来, 二维过渡金属硫族化合物(transition metal dichalcogenides, TMDCs)由于其出色的电学和光学特性在光电探测领域被广泛研究. 相比于报道较多的场效应晶体管型以及异质结型器件, 同质结器件在光电探测方面具有独特优势. 本文将聚焦基于TMDCs同质结的光电探测器的研究, 首先介绍同质结光电器件的主要工作原理, 然后以载流子调控方式为分类依据总结TMDCs同质结的几种制备方法及其获得的电学和光电性能. 此外, 本文还对同质结器件中光生载流子的输运过程进行具体分析, 阐述横向p-i-n结构具有超快光电响应速度的原因. 最后对基于TMDCs同质结的光电探测器的研究进行总结与前景展望.
    In recent years, two-dimensional transition metal chalcogenides (TMDCs) have been widely studied in the field of photodetection due to their excellent electronic and optical properties. Compared with the more reported field-effect transistor and heterojunction devices, homojunction devices have unique advantages in photodetection. This article focuses on the researches of photodetectors based on the homojunctions of TMDCs. First, the working principle of homojunction optoelectronic device is introduced. Then, the reported TMDCs based homojunctions are classified and summarized according to the adopted carrier modulation techniques. In addition, this article also specifically analyzes the transport process of photogenerated carriers in homojunction device, and explains why the lateral p-i-n homojunction exhibits fast photoresponse speed. Finally, the research progress of the TMDCs based homojunction photodetectors is summarized and the future development is also prospected.
      通信作者: 张有为, youweizhang@hust.edu.cn
      作者简介:
      张有为, 2008年本科毕业于厦门大学材料科学与工程专业; 2016年博士毕业于复旦大学微电子与固态电子学专业; 毕业后赴瑞典乌普萨拉大学从事博士后研究; 2018年至今任华中科技大学物理学院副研究员, 博导; 目前主要从事基于低维材料体系的新型纳米电子器件研究, 包括器件工艺, 电学特性, 光电探测等方面. 在国际顶尖期刊ACS Nano, Small, Advanced Optical Materials, Nano Research, Nanophotonics, Scientific Reports, Organic Electronics, IEEE Electron Device Letters, Journal of Physical Chemistry C等发表文章20余篇, 其中包括物理学科ESI高被引论文1篇. 相关器件设计与工艺方面的研究成果已申请并授权国内发明专利12项. 主持国家、省、市级科研项目4项
    • 基金项目: 国家自然科学基金(批准号: 12074134)、深圳市科技计划(批准号: JCYJ20180507183904841, GJHZ20200731095203009)和湖北省自然科学基金(批准号: 2020CFB406)资助的课题
      Corresponding author: Zhang You-Wei, youweizhang@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074134), the Shenzhen Science and Technology Project, China (Grant Nos. JCYJ20180507183904841, GJHZ20200731095203009), and the Natural Science Foundation of Hubei Province, China (Grant No. 2020CFB406)
    [1]

    Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [2]

    Xie C, Mak C, Tao X, Yan F 2017 Adv. Funct. Mater. 27 1603886Google Scholar

    [3]

    Wang G, Zhang Y, You C, Liu B, Yang Y, Li H, Cui A, Liu D, Yan H 2018 Infrared Phys. Technol. 88 149Google Scholar

    [4]

    Huo N, Konstantatos G 2018 Adv. Mater. 30 e1801164Google Scholar

    [5]

    Guo N, Xiao L, Gong F, Luo M, Wang F, Jia Y, Chang H, Liu J, Li Q, Wu Y, Wang Y, Shan C, Xu Y, Zhou P, Hu W 2020 Adv. Sci. 7 1901637Google Scholar

    [6]

    Han J, He M, Yang M, Han Q, Wang F, Zhong F, Xu M, Li Q, Zhu H, Shan C, Hu W, Chen X, Wang X, Gou J, Wu Z, Wang J 2020 Light-Sci. Appl. 9 167Google Scholar

    [7]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [8]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [9]

    Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 Nano Lett. 12 3695Google Scholar

    [10]

    Jin W, Yeh P C, Zaki N, Zhang D, Sadowski J T, Al-Mahboob A, van der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood R M Jr 2013 Phys. Rev. Lett. 111 106801Google Scholar

    [11]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar

    [12]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [13]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [14]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [15]

    Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320Google Scholar

    [16]

    Zhou H, Wang C, Shaw J C, Cheng R, Chen Y, Huang X, Liu Y, Weiss N O, Lin Z, Huang Y, Duan X 2015 Nano Lett. 15 709Google Scholar

    [17]

    Lv R, Robinson J A, Schaak R E, Sun D, Sun Y, Mallouk T E, Terrones M 2015 Acc. Chem. Res. 48 56Google Scholar

    [18]

    Shi Y, Li H, Li L J 2015 Chem. Soc. Rev. 44 2744Google Scholar

    [19]

    Chen J Y, Liu L, Li C X, Xu J P 2019 Chin. Phys. Lett. 36 037301Google Scholar

    [20]

    Chen Y, Wang Y, Wang Z, Gu Y, Ye Y, Chai X, Ye J, Chen Y, Xie R, Zhou Y, Hu Z, Li Q, Zhang L, Wang F, Wang P, Miao J, Wang J, Chen X, Lu W, Zhou P, Hu W 2021 Nat. Electron. 4 357Google Scholar

    [21]

    Hu W, Ye Z, Liao L, Chen H, Chen L, Ding R, He L, Chen X, Lu W 2014 Opt. Lett. 39 5184Google Scholar

    [22]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [23]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74Google Scholar

    [24]

    Wu C C, Jariwala D, Sangwan V K, Marks T J, Hersam M C, Lauhon L J 2013 J. Phys. Chem. Lett. 4 2508Google Scholar

    [25]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [26]

    Wei X, Yan F G, Shen C, Lü Q S, Wang K Y 2017 Chin. Phys. B 26 038504Google Scholar

    [27]

    Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar

    [28]

    Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K, Li L J 2015 Science 349 524Google Scholar

    [29]

    Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y, Duan X 2014 Nat. Nanotechnol. 9 1024Google Scholar

    [30]

    Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y, Duan X 2014 Nano Lett. 14 5590Google Scholar

    [31]

    Esmaeili-Rad M R, Salahuddin S 2013 Sci. Rep. 3 2345Google Scholar

    [32]

    Xu Z, Lin S, Li X, Zhang S, Wu Z, Xu W, Lu Y, Xu S 2016 Nano Energy 23 89Google Scholar

    [33]

    He D, Pan Y, Nan H, Gu S, Yang Z, Wu B, Luo X, Xu B, Zhang Y, Li Y, Ni Z, Wang B, Zhu J, Chai Y, Shi Y, Wang X 2015 Appl. Phys. Lett. 107 183103Google Scholar

    [34]

    Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X, Ye P D 2014 ACS Nano 8 8292Google Scholar

    [35]

    Novoselov, K. S, Mishchenko, A., Carvalho, Ne to, Castro. A H 2016 Science 353 aac9439Google Scholar

    [36]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111Google Scholar

    [37]

    Yang Y, Huo N, Li J 2018 J. Mater. Chem. C 6 11673Google Scholar

    [38]

    Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262Google Scholar

    [39]

    Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H, Xu X 2014 Nat. Nanotechnol. 9 268Google Scholar

    [40]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [41]

    Groenendijk D J, Buscema M, Steele G A, Michaelis de Vasconcellos S, Bratschitsch R, van der Zant H S, Castellanos-Gomez A 2014 Nano Lett. 14 5846Google Scholar

    [42]

    Memaran S, Pradhan N R, Lu Z, Rhodes D, Ludwig J, Zhou Q, Ogunsolu O, Ajayan P M, Smirnov D, Fernandez-Dominguez A I, Garcia-Vidal F J, Balicas L 2015 Nano Lett. 15 7532Google Scholar

    [43]

    Wang Z, Wang F, Yin L, Huang Y, Xu K, Wang F, Zhan X, He J 2016 Nanoscale 8 13245Google Scholar

    [44]

    Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K, Taniguchi T, Watanabe K, Kong J, Englund D, Jarillo-Herrero P 2017 Nat. Nanotechnol. 12 1124Google Scholar

    [45]

    Lee H S, Lim J Y, Yu S, Jeong Y, Park S, Oh K, Hong S, Yang S, Lee C H, Im S 2019 Adv. Opt. Mater. 7 1900768Google Scholar

    [46]

    Lim J Y, Pezeshki A, Oh S, Kim J S, Lee Y T, Yu S, Hwang D K, Lee G H, Choi H J, Im S 2017 Adv. Mater. 29 1701798Google Scholar

    [47]

    Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M, Liao L, Jiang A, Sun J, Meng X, Chen X, Lu W, Chu J 2015 Adv. Mater. 27 6575Google Scholar

    [48]

    Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K, Özyilmaz B 2010 Phys. Rev. Lett. 105 166602Google Scholar

    [49]

    Baeumer C, Rogers S P, Xu R, Martin L W, Shim M 2013 Nano Lett. 13 1693Google Scholar

    [50]

    Baeumer C, Saldana-Greco D, Martirez J M P, Rappe A M, Shim M, Martin L W 2015 Nat. Commun. 6 6136Google Scholar

    [51]

    Chen J W, Lo S T, Ho S C, Wong S S, Vu T H, Zhang X Q, Liu Y D, Chiou Y Y, Chen Y X, Yang J C, Chen Y C, Chu Y H, Lee Y H, Chung C J, Chen T M, Chen C H, Wu C L 2018 Nat. Commun. 9 3143Google Scholar

    [52]

    Wu G, Wang X, Chen Y, Wu S, Wu B, Jiang Y, Shen H, Lin T, Liu Q, Wang X, Zhou P, Zhang S, Hu W, Meng X, Chu J, Wang J 2020 Adv. Mater. 32 e1907937Google Scholar

    [53]

    Wu G, Tian B, Liu L, Lv W, Wu S, Wang X, Chen Y, Li J, Wang Z, Wu S, Shen H, Lin T, Zhou P, Liu Q, Duan C, Zhang S, Meng X, Wu S, Hu W, Wang X, Chu J, Wang J 2020 Nat. Electron. 3 43Google Scholar

    [54]

    Lü L, Zhuge F, Xie F, Xiong X, Zhang Q, Zhang N, Huang Y, Zhai T 2019 Nat. Commun. 10 3331Google Scholar

    [55]

    Liu T, Xiang D, Zheng Y, Wang Y, Wang X, Wang L, He J, Liu L, Chen W 2018 Adv. Mater. 30 e1804470Google Scholar

    [56]

    Wu E, Xie Y, Zhang J, Zhang H, Hu X, Liu J, Zhou C, Zhang D 2019 Sci. Adv. 5 eaav3430Google Scholar

    [57]

    Wu E, Xie Y, Wang S, Zhang D, Hu X, Liu J 2020 Nano Res. 13 3445Google Scholar

    [58]

    Choi M S, Qu D, Lee D, Liu X, Watanabe K, Taniguchi T, Yoo W J 2014 ACS Nano 8 9332Google Scholar

    [59]

    Li H M, Lee D, Qu D, Liu X, Ryu J, Seabaugh A, Yoo W J 2015 Nat. Commun. 6 6564Google Scholar

    [60]

    Sun M, Xie D, Sun Y, Li W, Ren T 2018 Nanotechnology 29 015203Google Scholar

    [61]

    Fan S, Shen W, An C, Sun Z, Wu S, Xu L, Sun D, Hu X, Zhang D, Liu J 2018 ACS Appl. Mater. Interfaces 10 26533Google Scholar

    [62]

    Jo S H, Kang D H, Shim J, Jeon J, Jeon M H, Yoo G, Kim J, Lee J, Yeom G Y, Lee S, Yu H Y, Choi C, Park J H 2016 Adv. Mater. 28 4824Google Scholar

    [63]

    Tang Y, Wang Z, Wang P, Wu F, Wang Y, Chen Y, Wang H, Peng M, Shan C, Zhu Z, Qin S, Hu W 2019 Small 15 e1805545Google Scholar

    [64]

    Sun J, Wang Y, Guo S, Wan B, Dong L, Gu Y, Song C, Pan C, Zhang Q, Gu L, Pan F, Zhang J 2020 Adv. Mater. 32 e1906499Google Scholar

    [65]

    Wi S, Kim H, Chen M, Nam H, Guo L J, Meyhofer E, Liang X 2014 ACS Nano 8 5270Google Scholar

    [66]

    Xie Y, Wu E, Hu R, Qian S, Feng Z, Chen X, Zhang H, Xu L, Hu X, Liu J, Zhang D 2018 Nanoscale 10 12436Google Scholar

    [67]

    Mitta S B, Ali F, Yang Z, Moon I, Ahmed F, Yoo T J, Lee B H, Yoo W J 2020 ACS Appl. Mater. Interfaces 12 23261Google Scholar

    [68]

    Zhang Y, Ma K, Zhao C, Hong W, Nie C, Qiu Z J, Wang S 2021 ACS Nano 15 4405Google Scholar

    [69]

    Chen J, Wang Q, Sheng Y, Cao G, Yang P, Shan Y, Liao F, Muhammad Z, Bao W, Hu L, Liu R, Cong C, Qiu Z J 2019 ACS Appl. Mater. Interfaces 11 43330Google Scholar

    [70]

    Aftab S, Khan M F, Gautam P, Noh H, Eom J 2019 Nanoscale 11 9518Google Scholar

    [71]

    Aftab S, Samiya, Rabia, Yousuf S, Khan M U, Khawar R, Younus A, Manzoor M, Iqbal M W, Iqbal M Z 2020 Nanoscale 12 15687Google Scholar

    [72]

    Zhang M L, Zou X M, Liu X Q 2020 Chin. Phys. Lett. 37 118501Google Scholar

    [73]

    Shin H J, Choi W M, Choi D, Han G H, Yoon S M, Park H K, Kim S W, Jin Y W, Lee S Y, Kim J M, Choi J Y, Lee Y H 2010 J. Am. Chem. Soc. 132 15603Google Scholar

    [74]

    Tosun M, Chan L, Amani M, Roy T, Ahn G H, Taheri P, Carraro C, Ager J W, Maboudian R, Javey A 2016 ACS Nano 10 6853Google Scholar

    [75]

    Jin Z, Cai Z, Chen X, Wei D 2018 Nano Res. 11 4923Google Scholar

    [76]

    Pudasaini P R, Oyedele A, Zhang C, Stanford M G, Cross N, Wong A T, Hoffman A N, Xiao K, Duscher G, Mandrus D G, Ward T Z, Rack P D 2017 Nano Res. 11 722Google Scholar

    [77]

    Kang W M, Lee S, Cho I T, Park T H, Shin H, Hwang C S, Lee C, Park B G, Lee J H 2018 Solid-State Electron. 140 2Google Scholar

    [78]

    Bolshakov P, Smyth C M, Khosravi A, Zhao P, Hurley P K, Hinkle C L, Wallace R M, Young C D 2019 ACS Appl. Electron. Mater. 1 210Google Scholar

    [79]

    Hoffman A N, Stanford M G, Sales M G, Zhang C, Ivanov I N, McDonnell S J, Mandrus D G, Rack P D 2019 2D Mater. 6 045024Google Scholar

    [80]

    Singh A K, Andleeb S, Singh J, Dung H T, Seo Y, Eom J 2014 Adv. Funct. Mater. 24 7125Google Scholar

    [81]

    Iqbal M W, Iqbal M Z, Khan M F, Shehzad M A, Seo Y, Eom J 2015 Nanoscale 7 747Google Scholar

    [82]

    Wang S Y, Ko T S, Huang C C, Lin D Y, Huang Y S 2014 Jpn. J. Appl. Phys. 53 04EH07Google Scholar

    [83]

    Suh J, Park T E, Lin D Y, Fu D, Park J, Jung H J, Chen Y, Ko C, Jang C, Sun Y, Sinclair R, Chang J, Tongay S, Wu J 2014 Nano Lett. 14 6976Google Scholar

    [84]

    Nipane A, Karmakar D, Kaushik N, Karande S, Lodha S 2016 ACS Nano 10 2128Google Scholar

    [85]

    Jin Y, Keum D H, An S J, Kim J, Lee H S, Lee Y H 2015 Adv. Mater. 27 5534Google Scholar

    [86]

    Svatek S A, Antolin E, Lin D-Y, Frisenda R, Reuter C, Molina-Mendoza A J, Muñoz M, Agraït N, Ko T-S, de Lara D P, Castellanos-Gomez A 2017 J. Mater. Chem. C 5 854Google Scholar

    [87]

    Noh J Y, Kim H, Kim Y S 2014 Phys. Rev. B 89 205417Google Scholar

    [88]

    Haldar S, Vovusha H, Yadav M K, Eriksson O, Sanyal B 2015 Phys. Rev. B 92 235408Google Scholar

    [89]

    Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J, Wang X 2013 Nat. Commun. 4 2642Google Scholar

    [90]

    Cui Z, Ke X, Li E, Wang X, Ding Y, Liu T, Li M, Zhao B 2018 Opt. Quantum. Electron. 50 1Google Scholar

    [91]

    Zhang X, Liao Q, Liu S, Kang Z, Zhang Z, Du J, Li F, Zhang S, Xiao J, Liu B, Ou Y, Liu X, Gu L, Zhang Y 2017 Nat. Commun. 8 15881Google Scholar

    [92]

    Zhang X, Liao Q, Kang Z, Liu B, Ou Y, Du J, Xiao J, Gao L, Shan H, Luo Y, Fang Z, Wang P, Sun Z, Zhang Z, Zhang Y 2019 ACS Nano 13 3280Google Scholar

    [93]

    Sun M, Xie D, Sun Y, Li W, Teng C, Xu J 2017 Sci. Rep. 7 4505Google Scholar

    [94]

    Lu J, Lu J H, Liu H, Liu B, Chan K X, Lin J, Chen W, Loh K P, Sow C H 2014 ACS Nano 8 6334Google Scholar

    [95]

    Xu Z-Q, Zhang Y, Wang Z, Shen Y, Huang W, Xia X, Yu W, Xue Y, Sun L, Zheng C, Lu Y, Liao L, Bao Q 2016 2D Mater. 3 041001Google Scholar

    [96]

    He Y, Sobhani A, Lei S, Zhang Z, Gong Y, Jin Z, Zhou W, Yang Y, Zhang Y, Wang X, Yakobson B, Vajtai R, Halas N J, Li B, Xie E, Ajayan P 2016 Adv. Mater. 28 5126Google Scholar

    [97]

    Kim K S, Ji Y J, Kim K H, Choi S, Kang D H, Heo K, Cho S, Yim S, Lee S, Park J H, Jung Y S, Yeom G Y 2019 Nat. Commun. 10 4701Google Scholar

    [98]

    Tan C, Wang H, Zhu X, Gao W, Li H, Chen J, Li G, Chen L, Xu J, Hu X, Li L, Zhai T 2020 ACS Appl. Mater. Interfaces 12 44934Google Scholar

    [99]

    Wang Z, Chen Y, Wu P, Ye J, Peng M, Yan Y, Zhong F, He T, Wang Y, Xu M, Zhang K, Hu Z, Li Q, Zhang L, Wang F, Wang P 2020 Infrared Phys. Technol. 106 103272Google Scholar

    [100]

    Fang H, Hu W 2017 Adv. Sci. 4 1700323Google Scholar

    [101]

    Jiang J, Ling C, Xu T, Wang W, Niu X, Zafar A, Yan Z, Wang X, You Y, Sun L, Lu J, Wang J, Ni Z 2018 Adv. Mater. 30 1804332Google Scholar

    [102]

    Hu Z, Wu Z, Han C, He J, Ni Z, Chen W 2018 Chem. Soc. Rev. 47 3100Google Scholar

    [103]

    Lucovsky G, Emmons R B 1965 Appl. Opt. 4 697Google Scholar

  • 图 1  基于电场调控的TMDCs同质结示意图与能带图

    Fig. 1.  Schematic and band diagram of TMDCs homojunction based on electric field regulation.

    图 2  基于电场调控的TMDCs同质结光电探测器 (a)分离栅极调控的同质结示意图; (b)不同栅压配置下的输出特性; (c) PN配置下器件的光响应[41]; (d)铁电极化调控的同质结示意图; (e)不同光功率下的IscVoc; (f)光电流的响应时间[52]; (g) UV诱导电场调控的同质结示意图; (h)输出特性随写入电压的变化; (i)不同光功率下的动态光响应[56]

    Fig. 2.  TMDCs homojunction photodetectors based on electric field regulation: (a) Schematic diagram of homojunction controlled by local gates; (b) output characteristics under different gate voltage configurations; (c) photoresponse of the device in PN configuration[41]; (d) schematic diagram of homojunction defined by ferroelectric polarization; (e) Isc and Voc at different laser powers; (f) the response time of photocurrent[52]; (g) schematic diagram of homojunction regulated by UV-induced electric field; (h) variation of output characteristics with writing voltage; (i) dynamic responses under different laser powers[56].

    图 3  TMDCs的p型和n型SCTD过程的能级示意图

    Fig. 3.  Schematic energy levels for p-type and n-type SCTD processes of TMDCs.

    图 4  基于SCTD的TMDCs同质结光电探测器 (a)光照下基于AlCl3化学掺杂的同质结示意图与电路图; (b) VG = –40 V时的 ID-VD曲线; (c)不同波长光照下的EQE和D*(VD = 1.5 V, VG = 0, ±40 V)[58]; (d)光照下基于CHF3等离子体处理的垂直同质结光伏效应示意图; (e)暗态和(f)AM1.5 G光照下的J-V曲线[65]; (g)激光诱导WSe2同质结示意图; (h)长时间循环光响应(Vds = 0 V, Vg = 40 V)[69]; (i)基于DUV诱导掺杂的垂直同质结示意图[70]

    Fig. 4.  TMDCs homojunction photodetectors based on SCTD: (a) Schematic diagram and circuit diagram of homojunction based on chemical doping by AlCl3 under illumination; (b) ID-VD curve at VG = –40 V; (c) EQE and D* under different wavelengths of light (VD = 1.5 V, VG = 0, ± 40 V)[58]; (d) photovoltaic effect of vertical homojunction based on CHF3 plasma treatment under illumination; J-V curves of (e) dark state and (f)AM1.5 G illumination[65]; (g) schematic diagram of laser-induced WSe2 homojunction; (h) Temporal photocurrent response(Vds = 0 V, Vg = 40 V)[69]; (i) schematic diagram of vertical homojunction based on DUV-induced doping[70].

    图 5  基于元素替位掺杂、缺陷工程和厚度调制的TMDCs同质结光电探测器 (a)基于元素替位掺杂的同质结示意图与光学图像; (b)栅极电压对光伏性能的调制; (c)不同光功率下的光伏性能(Vg = 0, λ = 660 nm)[86]; (d)基于S空位自修复的单层MoS2横向同质结示意图; (e)光照下的输出特性曲线(λ = 575 nm)[91]; (f) 基于S空位自修复的垂直同质结示意图与光学图像[92]; (g)单层和多层MoS2以及Ti的能带图; (h) MoS2单层-多层结示意图; (i) 470 nm光照下器件的光响应特性[93]

    Fig. 5.  TMDCs homojunction photodetectors based on element substitution doping, defect engineering and thickness modulation: (a) Schematic diagram and optical image of homojunction based on element substitution doping; (b) modulation of gate voltage on photovoltaic performance; (c) photovoltaic performance under different optical power(Vg = 0, λ = 660 nm)[86]; (d) schematic diagram of single-layer MoS2 lateral homojunction based on S vacancy self-healing; (e) output curve under illumination(λ = 575 nm)[91]; (f) schematic diagram and optical image of vetical homojunction based on S vacancy self-healing[92]; (g) the band diagram of single and multilayer MoS2 and Ti; (h) schematic diagram of the multilayer/monolayer MoS2 junction; (i) photoresponse characteristics of the device under 470 nm illumination[93].

    图 6  (a)横向p-n结与(b)横向p-i-n结的器件结构与对应的光生载流子输运过程

    Fig. 6.  Device structures and corresponding photogenerated carrier transport processes for (a) lateral p-n junction and (b) lateral p-i-n junction.

    图 7  基于横向p-i-n同质结的超快WSe2光电二极管 (a)器件光学图像; (b)掺杂分布的横截面示意图; (c)Vds = 1 V时的输出特性曲线; (d)零偏和反向偏置状态下响应度和比探测率随入射光功率的变化; (e)光电流响应时间; (f) p-i-n光电二极管的带宽频率响应[68]

    Fig. 7.  Ultrafast WSe2 photodiode based on lateral p-i-n homojunction: (a) Optical image of the device; (b) cross-sectional schematic diagram of doping distribution; (c) output curve at Vds = 1 V; (d) R and D* as a function of incident light power density under zero bias and reverse bias; (e) the response time of photocurrent; (f) broadband frequency response of the p-i-n photodiode[68].

    表 1  基于TMDCs同质结的光电探测器性能对比

    Table 1.  Performance comparison of photodetectors based on TMDCs homojunctions.

    材料
    器件结构
    载流子调控方式整流比
    理想
    因子
    光源
    波长/nm
    偏置电压
    Vpn/V
    响应度/
    mA·W–1
    比探测率/
    Jones
    响应时间 文献
    n型p型上升/ms下降/ms
    单层WSe2横向p-n正栅压负栅压1051.95322210[38]
    单层WSe2横向p-n正栅压负栅压2.14532–10.710.49.8[41]
    多层MoTe2横向p-n铁电极化铁电极化5×1052520053×10120.030.045[52]
    多层MoS2横向p-n铁电极化铁电极化1051.75320150.010.02[54]
    少层MoTe2横向p-nUV诱导电场UV诱导电场1032.1532016022[57]
    多层MoS2横向p-nAuCl3601 (Vg = –40 V)5001.550703×1010100200[58]
    少层MoS2垂直p-nBVAuCl31001.6655–130[59]
    少层WSe2横向p-nN2H4~103470–5306.18×10822[60]
    多层WSe2横向p-nN2H41051.1635–5 (Vg = –40 V)4682.5×10944[37]
    少层MoSe2横向p-nPPh3MoOx (退火)1041.253201300[61]
    多层WSe2横向p-nPEI负栅压1031.6652008010110.20.06[63]
    少层WSe2横向p-nCTAB1031.64450–1.53×10410117.87.7[64]
    多层WSe2横向p-nN2O plasma106 (Vg = –60 V)3.152012490830[66]
    多层WSe2横向p-nWOx (O2 Plasma)52012507.7×10941.82289.8[67]
    多层WSe2横向p-n正栅压WOx (laser)63308000.1360.039[69]
    多层MoTe2垂直p-nDUV(N2)1041.055300850[70]
    多层MoTe2横向p-nDUV(N2)2.5×104~1850055002938[71]
    少层MoS2垂直p-n元素掺杂(Fe)元素掺杂(Nb)~2.56600258080[86]
    单层MoS2横向n+–nPSS诱导
    缺陷修复(n+)
    —(n)~1501.65750308810750[91]
    双层MoS2垂直n+–nPSS诱导
    缺陷修复(n+)
    —(n)721.6532054.631003800[92]
    多层WSe2横向p-i-nWSe2–y

    (Ar Plasma)
    WOx(O2 plasma)1061.1445001052.2×10130.0002640.000552[68]
    MoS2横向单层-多层103 (Vg = 10 V)1.95(Vg = 5 V)4701067×101022000[93]
    下载: 导出CSV
  • [1]

    Koppens F H, Mueller T, Avouris P, Ferrari A C, Vitiello M S, Polini M 2014 Nat. Nanotechnol. 9 780Google Scholar

    [2]

    Xie C, Mak C, Tao X, Yan F 2017 Adv. Funct. Mater. 27 1603886Google Scholar

    [3]

    Wang G, Zhang Y, You C, Liu B, Yang Y, Li H, Cui A, Liu D, Yan H 2018 Infrared Phys. Technol. 88 149Google Scholar

    [4]

    Huo N, Konstantatos G 2018 Adv. Mater. 30 e1801164Google Scholar

    [5]

    Guo N, Xiao L, Gong F, Luo M, Wang F, Jia Y, Chang H, Liu J, Li Q, Wu Y, Wang Y, Shan C, Xu Y, Zhou P, Hu W 2020 Adv. Sci. 7 1901637Google Scholar

    [6]

    Han J, He M, Yang M, Han Q, Wang F, Zhong F, Xu M, Li Q, Zhu H, Shan C, Hu W, Chen X, Wang X, Gou J, Wu Z, Wang J 2020 Light-Sci. Appl. 9 167Google Scholar

    [7]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [8]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [9]

    Lee H S, Min S W, Chang Y G, Park M K, Nam T, Kim H, Kim J H, Ryu S, Im S 2012 Nano Lett. 12 3695Google Scholar

    [10]

    Jin W, Yeh P C, Zaki N, Zhang D, Sadowski J T, Al-Mahboob A, van der Zande A M, Chenet D A, Dadap J I, Herman I P, Sutter P, Hone J, Osgood R M Jr 2013 Phys. Rev. Lett. 111 106801Google Scholar

    [11]

    Bernardi M, Palummo M, Grossman J C 2013 Nano Lett. 13 3664Google Scholar

    [12]

    Mak K F, Shan J 2016 Nat. Photonics 10 216Google Scholar

    [13]

    Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20 116Google Scholar

    [14]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [15]

    Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320Google Scholar

    [16]

    Zhou H, Wang C, Shaw J C, Cheng R, Chen Y, Huang X, Liu Y, Weiss N O, Lin Z, Huang Y, Duan X 2015 Nano Lett. 15 709Google Scholar

    [17]

    Lv R, Robinson J A, Schaak R E, Sun D, Sun Y, Mallouk T E, Terrones M 2015 Acc. Chem. Res. 48 56Google Scholar

    [18]

    Shi Y, Li H, Li L J 2015 Chem. Soc. Rev. 44 2744Google Scholar

    [19]

    Chen J Y, Liu L, Li C X, Xu J P 2019 Chin. Phys. Lett. 36 037301Google Scholar

    [20]

    Chen Y, Wang Y, Wang Z, Gu Y, Ye Y, Chai X, Ye J, Chen Y, Xie R, Zhou Y, Hu Z, Li Q, Zhang L, Wang F, Wang P, Miao J, Wang J, Chen X, Lu W, Zhou P, Hu W 2021 Nat. Electron. 4 357Google Scholar

    [21]

    Hu W, Ye Z, Liao L, Chen H, Chen L, Ding R, He L, Chen X, Lu W 2014 Opt. Lett. 39 5184Google Scholar

    [22]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [23]

    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H 2012 ACS Nano 6 74Google Scholar

    [24]

    Wu C C, Jariwala D, Sangwan V K, Marks T J, Hersam M C, Lauhon L J 2013 J. Phys. Chem. Lett. 4 2508Google Scholar

    [25]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [26]

    Wei X, Yan F G, Shen C, Lü Q S, Wang K Y 2017 Chin. Phys. B 26 038504Google Scholar

    [27]

    Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 14 4785Google Scholar

    [28]

    Li M Y, Shi Y, Cheng C C, Lu L S, Lin Y C, Tang H L, Tsai M L, Chu C W, Wei K H, He J H, Chang W H, Suenaga K, Li L J 2015 Science 349 524Google Scholar

    [29]

    Duan X, Wang C, Shaw J C, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y, Duan X 2014 Nat. Nanotechnol. 9 1024Google Scholar

    [30]

    Cheng R, Li D, Zhou H, Wang C, Yin A, Jiang S, Liu Y, Chen Y, Huang Y, Duan X 2014 Nano Lett. 14 5590Google Scholar

    [31]

    Esmaeili-Rad M R, Salahuddin S 2013 Sci. Rep. 3 2345Google Scholar

    [32]

    Xu Z, Lin S, Li X, Zhang S, Wu Z, Xu W, Lu Y, Xu S 2016 Nano Energy 23 89Google Scholar

    [33]

    He D, Pan Y, Nan H, Gu S, Yang Z, Wu B, Luo X, Xu B, Zhang Y, Li Y, Ni Z, Wang B, Zhu J, Chai Y, Shi Y, Wang X 2015 Appl. Phys. Lett. 107 183103Google Scholar

    [34]

    Deng Y, Luo Z, Conrad N J, Liu H, Gong Y, Najmaei S, Ajayan P M, Lou J, Xu X, Ye P D 2014 ACS Nano 8 8292Google Scholar

    [35]

    Novoselov, K. S, Mishchenko, A., Carvalho, Ne to, Castro. A H 2016 Science 353 aac9439Google Scholar

    [36]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111Google Scholar

    [37]

    Yang Y, Huo N, Li J 2018 J. Mater. Chem. C 6 11673Google Scholar

    [38]

    Baugher B W, Churchill H O, Yang Y, Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262Google Scholar

    [39]

    Ross J S, Klement P, Jones A M, Ghimire N J, Yan J, Mandrus D G, Taniguchi T, Watanabe K, Kitamura K, Yao W, Cobden D H, Xu X 2014 Nat. Nanotechnol. 9 268Google Scholar

    [40]

    Pospischil A, Furchi M M, Mueller T 2014 Nat. Nanotechnol. 9 257Google Scholar

    [41]

    Groenendijk D J, Buscema M, Steele G A, Michaelis de Vasconcellos S, Bratschitsch R, van der Zant H S, Castellanos-Gomez A 2014 Nano Lett. 14 5846Google Scholar

    [42]

    Memaran S, Pradhan N R, Lu Z, Rhodes D, Ludwig J, Zhou Q, Ogunsolu O, Ajayan P M, Smirnov D, Fernandez-Dominguez A I, Garcia-Vidal F J, Balicas L 2015 Nano Lett. 15 7532Google Scholar

    [43]

    Wang Z, Wang F, Yin L, Huang Y, Xu K, Wang F, Zhan X, He J 2016 Nanoscale 8 13245Google Scholar

    [44]

    Bie Y Q, Grosso G, Heuck M, Furchi M M, Cao Y, Zheng J, Bunandar D, Navarro-Moratalla E, Zhou L, Efetov D K, Taniguchi T, Watanabe K, Kong J, Englund D, Jarillo-Herrero P 2017 Nat. Nanotechnol. 12 1124Google Scholar

    [45]

    Lee H S, Lim J Y, Yu S, Jeong Y, Park S, Oh K, Hong S, Yang S, Lee C H, Im S 2019 Adv. Opt. Mater. 7 1900768Google Scholar

    [46]

    Lim J Y, Pezeshki A, Oh S, Kim J S, Lee Y T, Yu S, Hwang D K, Lee G H, Choi H J, Im S 2017 Adv. Mater. 29 1701798Google Scholar

    [47]

    Wang X, Wang P, Wang J, Hu W, Zhou X, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M, Liao L, Jiang A, Sun J, Meng X, Chen X, Lu W, Chu J 2015 Adv. Mater. 27 6575Google Scholar

    [48]

    Zheng Y, Ni G X, Toh C T, Tan C Y, Yao K, Özyilmaz B 2010 Phys. Rev. Lett. 105 166602Google Scholar

    [49]

    Baeumer C, Rogers S P, Xu R, Martin L W, Shim M 2013 Nano Lett. 13 1693Google Scholar

    [50]

    Baeumer C, Saldana-Greco D, Martirez J M P, Rappe A M, Shim M, Martin L W 2015 Nat. Commun. 6 6136Google Scholar

    [51]

    Chen J W, Lo S T, Ho S C, Wong S S, Vu T H, Zhang X Q, Liu Y D, Chiou Y Y, Chen Y X, Yang J C, Chen Y C, Chu Y H, Lee Y H, Chung C J, Chen T M, Chen C H, Wu C L 2018 Nat. Commun. 9 3143Google Scholar

    [52]

    Wu G, Wang X, Chen Y, Wu S, Wu B, Jiang Y, Shen H, Lin T, Liu Q, Wang X, Zhou P, Zhang S, Hu W, Meng X, Chu J, Wang J 2020 Adv. Mater. 32 e1907937Google Scholar

    [53]

    Wu G, Tian B, Liu L, Lv W, Wu S, Wang X, Chen Y, Li J, Wang Z, Wu S, Shen H, Lin T, Zhou P, Liu Q, Duan C, Zhang S, Meng X, Wu S, Hu W, Wang X, Chu J, Wang J 2020 Nat. Electron. 3 43Google Scholar

    [54]

    Lü L, Zhuge F, Xie F, Xiong X, Zhang Q, Zhang N, Huang Y, Zhai T 2019 Nat. Commun. 10 3331Google Scholar

    [55]

    Liu T, Xiang D, Zheng Y, Wang Y, Wang X, Wang L, He J, Liu L, Chen W 2018 Adv. Mater. 30 e1804470Google Scholar

    [56]

    Wu E, Xie Y, Zhang J, Zhang H, Hu X, Liu J, Zhou C, Zhang D 2019 Sci. Adv. 5 eaav3430Google Scholar

    [57]

    Wu E, Xie Y, Wang S, Zhang D, Hu X, Liu J 2020 Nano Res. 13 3445Google Scholar

    [58]

    Choi M S, Qu D, Lee D, Liu X, Watanabe K, Taniguchi T, Yoo W J 2014 ACS Nano 8 9332Google Scholar

    [59]

    Li H M, Lee D, Qu D, Liu X, Ryu J, Seabaugh A, Yoo W J 2015 Nat. Commun. 6 6564Google Scholar

    [60]

    Sun M, Xie D, Sun Y, Li W, Ren T 2018 Nanotechnology 29 015203Google Scholar

    [61]

    Fan S, Shen W, An C, Sun Z, Wu S, Xu L, Sun D, Hu X, Zhang D, Liu J 2018 ACS Appl. Mater. Interfaces 10 26533Google Scholar

    [62]

    Jo S H, Kang D H, Shim J, Jeon J, Jeon M H, Yoo G, Kim J, Lee J, Yeom G Y, Lee S, Yu H Y, Choi C, Park J H 2016 Adv. Mater. 28 4824Google Scholar

    [63]

    Tang Y, Wang Z, Wang P, Wu F, Wang Y, Chen Y, Wang H, Peng M, Shan C, Zhu Z, Qin S, Hu W 2019 Small 15 e1805545Google Scholar

    [64]

    Sun J, Wang Y, Guo S, Wan B, Dong L, Gu Y, Song C, Pan C, Zhang Q, Gu L, Pan F, Zhang J 2020 Adv. Mater. 32 e1906499Google Scholar

    [65]

    Wi S, Kim H, Chen M, Nam H, Guo L J, Meyhofer E, Liang X 2014 ACS Nano 8 5270Google Scholar

    [66]

    Xie Y, Wu E, Hu R, Qian S, Feng Z, Chen X, Zhang H, Xu L, Hu X, Liu J, Zhang D 2018 Nanoscale 10 12436Google Scholar

    [67]

    Mitta S B, Ali F, Yang Z, Moon I, Ahmed F, Yoo T J, Lee B H, Yoo W J 2020 ACS Appl. Mater. Interfaces 12 23261Google Scholar

    [68]

    Zhang Y, Ma K, Zhao C, Hong W, Nie C, Qiu Z J, Wang S 2021 ACS Nano 15 4405Google Scholar

    [69]

    Chen J, Wang Q, Sheng Y, Cao G, Yang P, Shan Y, Liao F, Muhammad Z, Bao W, Hu L, Liu R, Cong C, Qiu Z J 2019 ACS Appl. Mater. Interfaces 11 43330Google Scholar

    [70]

    Aftab S, Khan M F, Gautam P, Noh H, Eom J 2019 Nanoscale 11 9518Google Scholar

    [71]

    Aftab S, Samiya, Rabia, Yousuf S, Khan M U, Khawar R, Younus A, Manzoor M, Iqbal M W, Iqbal M Z 2020 Nanoscale 12 15687Google Scholar

    [72]

    Zhang M L, Zou X M, Liu X Q 2020 Chin. Phys. Lett. 37 118501Google Scholar

    [73]

    Shin H J, Choi W M, Choi D, Han G H, Yoon S M, Park H K, Kim S W, Jin Y W, Lee S Y, Kim J M, Choi J Y, Lee Y H 2010 J. Am. Chem. Soc. 132 15603Google Scholar

    [74]

    Tosun M, Chan L, Amani M, Roy T, Ahn G H, Taheri P, Carraro C, Ager J W, Maboudian R, Javey A 2016 ACS Nano 10 6853Google Scholar

    [75]

    Jin Z, Cai Z, Chen X, Wei D 2018 Nano Res. 11 4923Google Scholar

    [76]

    Pudasaini P R, Oyedele A, Zhang C, Stanford M G, Cross N, Wong A T, Hoffman A N, Xiao K, Duscher G, Mandrus D G, Ward T Z, Rack P D 2017 Nano Res. 11 722Google Scholar

    [77]

    Kang W M, Lee S, Cho I T, Park T H, Shin H, Hwang C S, Lee C, Park B G, Lee J H 2018 Solid-State Electron. 140 2Google Scholar

    [78]

    Bolshakov P, Smyth C M, Khosravi A, Zhao P, Hurley P K, Hinkle C L, Wallace R M, Young C D 2019 ACS Appl. Electron. Mater. 1 210Google Scholar

    [79]

    Hoffman A N, Stanford M G, Sales M G, Zhang C, Ivanov I N, McDonnell S J, Mandrus D G, Rack P D 2019 2D Mater. 6 045024Google Scholar

    [80]

    Singh A K, Andleeb S, Singh J, Dung H T, Seo Y, Eom J 2014 Adv. Funct. Mater. 24 7125Google Scholar

    [81]

    Iqbal M W, Iqbal M Z, Khan M F, Shehzad M A, Seo Y, Eom J 2015 Nanoscale 7 747Google Scholar

    [82]

    Wang S Y, Ko T S, Huang C C, Lin D Y, Huang Y S 2014 Jpn. J. Appl. Phys. 53 04EH07Google Scholar

    [83]

    Suh J, Park T E, Lin D Y, Fu D, Park J, Jung H J, Chen Y, Ko C, Jang C, Sun Y, Sinclair R, Chang J, Tongay S, Wu J 2014 Nano Lett. 14 6976Google Scholar

    [84]

    Nipane A, Karmakar D, Kaushik N, Karande S, Lodha S 2016 ACS Nano 10 2128Google Scholar

    [85]

    Jin Y, Keum D H, An S J, Kim J, Lee H S, Lee Y H 2015 Adv. Mater. 27 5534Google Scholar

    [86]

    Svatek S A, Antolin E, Lin D-Y, Frisenda R, Reuter C, Molina-Mendoza A J, Muñoz M, Agraït N, Ko T-S, de Lara D P, Castellanos-Gomez A 2017 J. Mater. Chem. C 5 854Google Scholar

    [87]

    Noh J Y, Kim H, Kim Y S 2014 Phys. Rev. B 89 205417Google Scholar

    [88]

    Haldar S, Vovusha H, Yadav M K, Eriksson O, Sanyal B 2015 Phys. Rev. B 92 235408Google Scholar

    [89]

    Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J, Wang X 2013 Nat. Commun. 4 2642Google Scholar

    [90]

    Cui Z, Ke X, Li E, Wang X, Ding Y, Liu T, Li M, Zhao B 2018 Opt. Quantum. Electron. 50 1Google Scholar

    [91]

    Zhang X, Liao Q, Liu S, Kang Z, Zhang Z, Du J, Li F, Zhang S, Xiao J, Liu B, Ou Y, Liu X, Gu L, Zhang Y 2017 Nat. Commun. 8 15881Google Scholar

    [92]

    Zhang X, Liao Q, Kang Z, Liu B, Ou Y, Du J, Xiao J, Gao L, Shan H, Luo Y, Fang Z, Wang P, Sun Z, Zhang Z, Zhang Y 2019 ACS Nano 13 3280Google Scholar

    [93]

    Sun M, Xie D, Sun Y, Li W, Teng C, Xu J 2017 Sci. Rep. 7 4505Google Scholar

    [94]

    Lu J, Lu J H, Liu H, Liu B, Chan K X, Lin J, Chen W, Loh K P, Sow C H 2014 ACS Nano 8 6334Google Scholar

    [95]

    Xu Z-Q, Zhang Y, Wang Z, Shen Y, Huang W, Xia X, Yu W, Xue Y, Sun L, Zheng C, Lu Y, Liao L, Bao Q 2016 2D Mater. 3 041001Google Scholar

    [96]

    He Y, Sobhani A, Lei S, Zhang Z, Gong Y, Jin Z, Zhou W, Yang Y, Zhang Y, Wang X, Yakobson B, Vajtai R, Halas N J, Li B, Xie E, Ajayan P 2016 Adv. Mater. 28 5126Google Scholar

    [97]

    Kim K S, Ji Y J, Kim K H, Choi S, Kang D H, Heo K, Cho S, Yim S, Lee S, Park J H, Jung Y S, Yeom G Y 2019 Nat. Commun. 10 4701Google Scholar

    [98]

    Tan C, Wang H, Zhu X, Gao W, Li H, Chen J, Li G, Chen L, Xu J, Hu X, Li L, Zhai T 2020 ACS Appl. Mater. Interfaces 12 44934Google Scholar

    [99]

    Wang Z, Chen Y, Wu P, Ye J, Peng M, Yan Y, Zhong F, He T, Wang Y, Xu M, Zhang K, Hu Z, Li Q, Zhang L, Wang F, Wang P 2020 Infrared Phys. Technol. 106 103272Google Scholar

    [100]

    Fang H, Hu W 2017 Adv. Sci. 4 1700323Google Scholar

    [101]

    Jiang J, Ling C, Xu T, Wang W, Niu X, Zafar A, Yan Z, Wang X, You Y, Sun L, Lu J, Wang J, Ni Z 2018 Adv. Mater. 30 1804332Google Scholar

    [102]

    Hu Z, Wu Z, Han C, He J, Ni Z, Chen W 2018 Chem. Soc. Rev. 47 3100Google Scholar

    [103]

    Lucovsky G, Emmons R B 1965 Appl. Opt. 4 697Google Scholar

  • [1] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [2] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [3] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [4] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [5] 霍冠忠, 苏超, 王可, 叶晴莹, 庄彬, 陈水源, 黄志高. 铁酸铋薄膜光电流的磁场调制研究. 物理学报, 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [6] 胡倩颖, 许杨. 二维半导体材料中激子对介电屏蔽效应的探测及其应用. 物理学报, 2022, 71(12): 127102. doi: 10.7498/aps.71.20220054
    [7] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [8] 刘川川, 郝飞翔, 殷月伟, 李晓光. Pt/BiFeO3/Nb:SrTiO3异质结的光伏效应和光调控整流特性. 物理学报, 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [9] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [10] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬. 二维材料WTe2用于气体传感器的性能研究. 物理学报, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [11] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, 2019, 68(19): 196103. doi: 10.7498/aps.68.20191042
    [12] 蔡田怡, 雎胜. 铁电体的光伏效应. 物理学报, 2018, 67(15): 157801. doi: 10.7498/aps.67.20180979
    [13] 周愈之. 过渡金属硫族化合物柔性基底体系的模型与应用. 物理学报, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [14] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [15] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [16] 李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然. 二维半导体过渡金属硫化物的逻辑集成器件. 物理学报, 2017, 66(21): 218503. doi: 10.7498/aps.66.218503
    [17] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [18] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应. 物理学报, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [19] 吴利华, 章晓中, 于奕, 万蔡华, 谭新玉. a-C: Fe/AlOx/Si基异质结的光伏效应. 物理学报, 2011, 60(3): 037807. doi: 10.7498/aps.60.037807
    [20] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
计量
  • 文章访问数:  8917
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-06-10
  • 上网日期:  2021-08-30
  • 刊出日期:  2021-09-05

/

返回文章
返回