-
BiFeO3作为一种具有体光伏效应的室温多铁材料, 是近年来多功能材料领域的研究热点. 其中磁、光、电等多种性能之间耦合作用的共存带来了丰富而复杂的物理内涵. 利用脉冲激光沉积在导电玻璃(SnO2:F, FTO)衬底上沉积了BiFeO3薄膜, 实验结果表明, 该薄膜具有良好的铁磁和铁电性能, 并通过磁场实现了对薄膜光电性能的调控. 在标准太阳光照的同时施加1.3 kOe (1 Oe = 103/(4π) A/m)磁场下, 磁-光电流变化率达到232.7%. BiFeO3薄膜中的磁-光电流效应来自于光磁电阻效应, 即光生电子在磁场作用下成为自旋光电子, 在材料导带运动过程中受到自旋相关散射而具有光磁电阻效应; 此外, 磁场作用使这些自旋光电子受到的畴壁散射减弱也进一步增强了磁光电流效应. 本文为磁场、光场调控多铁性薄膜的磁、光、电等物理特性提供了参考, 为多功能光电材料领域的器件研究与应用提供了基础.BiFeO3 (BFO) is a kind of room temperature multiferroic material with bulk photovoltaic effect, and it has been a research hotspot in the field of multifunctional materials in recent years. The coexistence of the coupling among magnetic, optical, electrical properties brings rich and complex physical connotations. In this work, BiFeO3 thin film is deposited on FTO substrate by pulsed laser deposition, and the solar cell structure with BiFeO3 film used as light absorption layer and Au film serving as electrode is constructed. X-ray diffraction and Raman spectra indicate that the BFO film grown on FTO substrate has a pure phase structure. The experimental results of physical properties indicate that the BFO film possesses good ferromagnetic and ferroelectric properties and obvious photoelectric effect. According to the hysteresis loop, the remanence (Mr) of the sample is 0.8 emu/cm3, and the coercivity (Hc) is 200 Oe at 300 K. In terms of ferroelectricity, the saturation polarization intensity of the sample can reach 0.997 μC/cm2, the residual polarization intensity is 0.337 μC/cm2, and the coercive electric field is 12.45 kV/cm. The above results show that the BFO film has good multiferroic properties. Under solar illumination conditions, the photocurrent density up to 208 mA/cm2 is obtained when a bias voltage 1 V is applied. More importantly, magneto-photocurrent (MPC) effect is found in the BFO film. No matter whether the magnetic field starts to increase from the positive direction or the negative direction, the MPC usually changes with the magnitude of magnetization. When a 1.3 kOe magnetic field is applied, the magneto-photocurrent change rate up to 232.7% is observed under standard solar illumination condition. The results show that the photocurrent of BFO films is greatly improved by a positive magnetic field and negative magnetic field. This magneto-photocurrent effect in BFO thin film comes from the photo-magnetoresistance effect, that is, the photogenerated electrons become spin photoelectrons under the action of an external magnetic field and receive spin-dependent scattering during moving in the conductive band of the material, thus producing the photo-magnetoresistance effect. In addition, the magneto-photocurrent effect is further enhanced by weakening the domain wall scattering of the spin electrons by the magnetic field. This work provides a reference for the modulation effect of magnetic field and light field on the magnetic, optical and electrical properties in multiferroics, and presents a foundation for the research and application of devices in the field of multifunctional optoelectronic materials.
-
Keywords:
- bismuth ferrate /
- photovoltaic effect /
- magnetic field /
- spintronic
[1] Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar
[2] Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126Google Scholar
[3] Thakoor S 1992 Appl. Phys. Lett. 60 3319Google Scholar
[4] 张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 物理学报 69 127709Google Scholar
Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709Google Scholar
[5] Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862Google Scholar
[6] Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901Google Scholar
[7] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar
[8] Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492Google Scholar
[9] Zhao Q L, He G P, Di J J, Song W L, Hou Z L, Tan P P, Wang D W, Cao M S 2017 ACS Appl. Mater. Interfaces 9 24696Google Scholar
[10] Sujoy K G, Jinyoung K, Minsoo P K, Sangyun N, Jeonghoon C, Jae J K, Hyunhyub K 2022 ACS Nano 16 11415Google Scholar
[11] Huangfu G, Xiao H, Guan L, Zhong H, Hu C, Shi Z, Guo Y 2020 ACS Appl. Mater. Interfaces 12 33950Google Scholar
[12] Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20Google Scholar
[13] Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photonics 9 61Google Scholar
[14] Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar
[15] Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271Google Scholar
[16] Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42Google Scholar
[17] Liu Y, Yao Y, Dong S, Yang S, Li X 2012 Phys. Rev. B 86 075113Google Scholar
[18] Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903Google Scholar
[19] Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905Google Scholar
[20] Ema K, Umeda K, Toda M, Yajima C, Arai Y, Kunugita H, Wolverson D, Davies J J 2006 Phys. Rev. B 73 241310Google Scholar
[21] Hsiao Y C, Wu T, Li M, Hu B 2015 Adv. Mater. 27 2899Google Scholar
[22] Pavliuk M V, Fernandes D L A, El-Zohry A M, Abdellah M, Nedelcu G, Kovalenko M V, Sa J 2016 Adv. Opt. Mater. 4 2004Google Scholar
[23] Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A, Vardeny Z V 2015 Nat. Phys. 11 427Google Scholar
[24] Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi-Rapid Res. Lett. 8 31Google Scholar
[25] Pan R, Wang K, Li Y, Yu H, Li J, Xu L 2021 Adv. Electron. Mater. 7 2100026Google Scholar
[26] Andy E 2019 Nature 570 429Google Scholar
[27] Tomas L, Kevin A B, Rohit P, Michael D M 2018 Nat. Energy 3 828Google Scholar
[28] Kevin A B, Axel F P, Zhengshan J Y, Mathieu B, Rongrong C, Jonathan P M, David P M, Robert L Z H, Colin D B, Tomas L, Ian M P, Maxmillian C M, Nicholas R, Rohit P, Sarah S, Duncan H, Wen M, Farhad M, Henry J S, Tonio B, Zachary C H, Stacey F B, Michael D M 2017 Nat. Energy 2 17009Google Scholar
[29] Florent S, Jérémie W, Brett A K, Matthias B, Raphaël M, Bertrand P S, Loris B, Laura D, Juan J D L, Davide S, Gianluca C, Matthieu D, Mathieu B, Sylvain N, Quentin J, Bjoern N, Christophe B 2018 Nat. Mater. 17 820Google Scholar
[30] Chen B, Yu Z S, Liu K, et al. 2019 Joule 3 177Google Scholar
[31] Martin A G, Stephen P B 2017 Nat. Mater. 16 23Google Scholar
[32] Pabitra K N, Suhas M, Henry J S, David C 2019 Nat. Rev. Mater. 4 269Google Scholar
[33] Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027Google Scholar
[34] 蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar
Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar
[35] Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager III J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143Google Scholar
[36] Guo R, You L, Lin W N, et al. 2020 Nat. Commun. 11 2571Google Scholar
[37] Jhonata R V, Gislayne R A S, Márcio R M 2022 Int J Appl Ceram Technol. 19 1779Google Scholar
[38] Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar
[39] Pal S, Sarath N V, Priya K S, Murugavel P 2022 J. Phys. D Appl. Phys. 55 283001Google Scholar
[40] Seung M L, Ahra C, Yong S C 2016 RSC Adv. 6 16602Google Scholar
[41] Jin C, Li X W, Han W Q, et al. 2021 ACS Appl. Mater. Interfaces 13 41315Google Scholar
[42] Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C, Tang W 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar
[43] Xu H, Lin Y, Harumoto T, Shi J, Nan C 2017 ACS Appl. Mater. Interfaces 9 30127Google Scholar
[44] Lu W, Fan Z, Yang Y, Ma J, Lai J, Song X, Zhuo X, Xu Z, Liu J, Hu X, Zhuo S, Xiu F, Cheng J, Sun D 2022 Nat. Commun. 13 1623Google Scholar
[45] Yao Q, Liu W, Zhang R, Ma Y, Wang Y, Hu R, Mao W, Pu Y, Li X 2019 ACS Sustainable Chem. Eng. 7 12439Google Scholar
[46] Sun D, Ehrenfreund E, Vardeny Z V 2014 Chem. Commun. 50 1781Google Scholar
[47] Sagar R U R, Zhang X, Wang J, Xiong C 2014 J. Appl. Phys. 115 123708Google Scholar
[48] Gautam B R, Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Phys. Rev. B 85 205207Google Scholar
[49] Wang J, Chepelianskii A, Gao F, Greenham N C 2012 Nat. Commun. 3 1191Google Scholar
[50] Hu B, Yan L, Shao M 2009 Adv. Mater. 21 1500Google Scholar
[51] Devir-Wolfman A H, Khachatryan B, Gautam B R, Tzabary L, Keren A, Tessler N, Vardeny Z V, Ehrenfreund E 2014 Nat. Commun. 5 4529Google Scholar
[52] Muneeswaran M, Giridharan N V 2014 J. Appl. Phys. 115 214109Google Scholar
[53] Sharma G N, Dutta S, Singh S K, Chatterjee R 2016 Mater. Res. Express 3 106202Google Scholar
[54] Wang J J, Hu J M, Yang T N, Feng M, Zhang J X, Chen L Q, Nan C W 2014 Sci. Rep. 4 4553Google Scholar
[55] Wei S, Wenxuan W, Dong C, Zhenxiang C, Tingting J, Yuanxu W 2019 J. Phys. Chem. C 123 16393Google Scholar
[56] Tan K H, Chen Y W, Van Nguyen C, et al. 2019 ACS Appl. Mater. Interfaces 11 1655Google Scholar
[57] Lu Y, Fan Z, Liang F, Yang Z, Liang Z T, Zeyu Z, Guohong M, Daniel S, Andrivo R, Le W, Lei C, Andrew M R, Junling W 2018 Sci. Adv. 4 eaat3438Google Scholar
[58] 翟宏如, 都有为, 韩秀峰, 刘俊明, 王克锋, 赵建华, 邓加军, 郑厚植, 邢定钰, 夏钶, 周仕明, 苏刚, 蔡建旺 2013 自旋电子学 (北京: 科学出版社) 第459, 460页
Zhai H R, Du Y Y, Han X F, Liu J M, Wang K F, Zhao J H, Deng J J, Zheng H Z, Xing D Y, Xia K, Zhou S M, Su G, Cai J W 2013 Spintronics (Beijing: Science Press) pp459, 460 (in Chinese)
-
图 4 在偏压分别为(a), (c) 0 V和(b), (d) 1 V时, 室温下样品的(a), (b)光电流随磁场变化曲线以及(c), (d)
$ {D}_{{\rm{M}}{\rm{P}}{\rm{C}},{\rm{V}}} $ 值随磁场变化的响应曲线Fig. 4. Change curves of photocurrent (a), (b) and
$ {D}_{{\rm{M}}{\rm{P}}{\rm{C}},{\rm{V}}} $ (c), (d) with the alteration of magnetic field for the sample at room temperature with the bias of (a), (c) 0 V and (b), (d) 1 V. -
[1] Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar
[2] Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126Google Scholar
[3] Thakoor S 1992 Appl. Phys. Lett. 60 3319Google Scholar
[4] 张亚菊, 谢忠帅, 郑海务, 袁国亮 2020 物理学报 69 127709Google Scholar
Zhang Y J, Xie Z S, Zheng H W, Yuan G L 2020 Acta Phys. Sin. 69 127709Google Scholar
[5] Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862Google Scholar
[6] Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901Google Scholar
[7] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar
[8] Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492Google Scholar
[9] Zhao Q L, He G P, Di J J, Song W L, Hou Z L, Tan P P, Wang D W, Cao M S 2017 ACS Appl. Mater. Interfaces 9 24696Google Scholar
[10] Sujoy K G, Jinyoung K, Minsoo P K, Sangyun N, Jeonghoon C, Jae J K, Hyunhyub K 2022 ACS Nano 16 11415Google Scholar
[11] Huangfu G, Xiao H, Guan L, Zhong H, Hu C, Shi Z, Guo Y 2020 ACS Appl. Mater. Interfaces 12 33950Google Scholar
[12] Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20Google Scholar
[13] Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2015 Nat. Photonics 9 61Google Scholar
[14] Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar
[15] Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271Google Scholar
[16] Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42Google Scholar
[17] Liu Y, Yao Y, Dong S, Yang S, Li X 2012 Phys. Rev. B 86 075113Google Scholar
[18] Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903Google Scholar
[19] Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905Google Scholar
[20] Ema K, Umeda K, Toda M, Yajima C, Arai Y, Kunugita H, Wolverson D, Davies J J 2006 Phys. Rev. B 73 241310Google Scholar
[21] Hsiao Y C, Wu T, Li M, Hu B 2015 Adv. Mater. 27 2899Google Scholar
[22] Pavliuk M V, Fernandes D L A, El-Zohry A M, Abdellah M, Nedelcu G, Kovalenko M V, Sa J 2016 Adv. Opt. Mater. 4 2004Google Scholar
[23] Zhang C, Sun D, Sheng C X, Zhai Y X, Mielczarek K, Zakhidov A, Vardeny Z V 2015 Nat. Phys. 11 427Google Scholar
[24] Even J, Pedesseau L, Jancu J M, Katan C 2014 Phys. Status Solidi-Rapid Res. Lett. 8 31Google Scholar
[25] Pan R, Wang K, Li Y, Yu H, Li J, Xu L 2021 Adv. Electron. Mater. 7 2100026Google Scholar
[26] Andy E 2019 Nature 570 429Google Scholar
[27] Tomas L, Kevin A B, Rohit P, Michael D M 2018 Nat. Energy 3 828Google Scholar
[28] Kevin A B, Axel F P, Zhengshan J Y, Mathieu B, Rongrong C, Jonathan P M, David P M, Robert L Z H, Colin D B, Tomas L, Ian M P, Maxmillian C M, Nicholas R, Rohit P, Sarah S, Duncan H, Wen M, Farhad M, Henry J S, Tonio B, Zachary C H, Stacey F B, Michael D M 2017 Nat. Energy 2 17009Google Scholar
[29] Florent S, Jérémie W, Brett A K, Matthias B, Raphaël M, Bertrand P S, Loris B, Laura D, Juan J D L, Davide S, Gianluca C, Matthieu D, Mathieu B, Sylvain N, Quentin J, Bjoern N, Christophe B 2018 Nat. Mater. 17 820Google Scholar
[30] Chen B, Yu Z S, Liu K, et al. 2019 Joule 3 177Google Scholar
[31] Martin A G, Stephen P B 2017 Nat. Mater. 16 23Google Scholar
[32] Pabitra K N, Suhas M, Henry J S, David C 2019 Nat. Rev. Mater. 4 269Google Scholar
[33] Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027Google Scholar
[34] 蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar
Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar
[35] Yang S Y, Seidel J, Byrnes S J, Shafer P, Yang C H, Rossell M D, Yu P, Chu Y H, Scott J F, Ager III J W, Martin L W, Ramesh R 2010 Nat. Nanotechnol. 5 143Google Scholar
[36] Guo R, You L, Lin W N, et al. 2020 Nat. Commun. 11 2571Google Scholar
[37] Jhonata R V, Gislayne R A S, Márcio R M 2022 Int J Appl Ceram Technol. 19 1779Google Scholar
[38] Ma G, Jiang W, Sun W, Yan Z, Sun B, Li S, Zhang M, Wang X, Gao A, Dai J, Liu Z, Li P, Tang W 2021 Phys. Scr. 96 125823Google Scholar
[39] Pal S, Sarath N V, Priya K S, Murugavel P 2022 J. Phys. D Appl. Phys. 55 283001Google Scholar
[40] Seung M L, Ahra C, Yong S C 2016 RSC Adv. 6 16602Google Scholar
[41] Jin C, Li X W, Han W Q, et al. 2021 ACS Appl. Mater. Interfaces 13 41315Google Scholar
[42] Guo D, Liu H, Li P, Wu Z, Wang S, Cui C, Li C, Tang W 2017 ACS Appl. Mater. Interfaces 9 1619Google Scholar
[43] Xu H, Lin Y, Harumoto T, Shi J, Nan C 2017 ACS Appl. Mater. Interfaces 9 30127Google Scholar
[44] Lu W, Fan Z, Yang Y, Ma J, Lai J, Song X, Zhuo X, Xu Z, Liu J, Hu X, Zhuo S, Xiu F, Cheng J, Sun D 2022 Nat. Commun. 13 1623Google Scholar
[45] Yao Q, Liu W, Zhang R, Ma Y, Wang Y, Hu R, Mao W, Pu Y, Li X 2019 ACS Sustainable Chem. Eng. 7 12439Google Scholar
[46] Sun D, Ehrenfreund E, Vardeny Z V 2014 Chem. Commun. 50 1781Google Scholar
[47] Sagar R U R, Zhang X, Wang J, Xiong C 2014 J. Appl. Phys. 115 123708Google Scholar
[48] Gautam B R, Nguyen T D, Ehrenfreund E, Vardeny Z V 2012 Phys. Rev. B 85 205207Google Scholar
[49] Wang J, Chepelianskii A, Gao F, Greenham N C 2012 Nat. Commun. 3 1191Google Scholar
[50] Hu B, Yan L, Shao M 2009 Adv. Mater. 21 1500Google Scholar
[51] Devir-Wolfman A H, Khachatryan B, Gautam B R, Tzabary L, Keren A, Tessler N, Vardeny Z V, Ehrenfreund E 2014 Nat. Commun. 5 4529Google Scholar
[52] Muneeswaran M, Giridharan N V 2014 J. Appl. Phys. 115 214109Google Scholar
[53] Sharma G N, Dutta S, Singh S K, Chatterjee R 2016 Mater. Res. Express 3 106202Google Scholar
[54] Wang J J, Hu J M, Yang T N, Feng M, Zhang J X, Chen L Q, Nan C W 2014 Sci. Rep. 4 4553Google Scholar
[55] Wei S, Wenxuan W, Dong C, Zhenxiang C, Tingting J, Yuanxu W 2019 J. Phys. Chem. C 123 16393Google Scholar
[56] Tan K H, Chen Y W, Van Nguyen C, et al. 2019 ACS Appl. Mater. Interfaces 11 1655Google Scholar
[57] Lu Y, Fan Z, Liang F, Yang Z, Liang Z T, Zeyu Z, Guohong M, Daniel S, Andrivo R, Le W, Lei C, Andrew M R, Junling W 2018 Sci. Adv. 4 eaat3438Google Scholar
[58] 翟宏如, 都有为, 韩秀峰, 刘俊明, 王克锋, 赵建华, 邓加军, 郑厚植, 邢定钰, 夏钶, 周仕明, 苏刚, 蔡建旺 2013 自旋电子学 (北京: 科学出版社) 第459, 460页
Zhai H R, Du Y Y, Han X F, Liu J M, Wang K F, Zhao J H, Deng J J, Zheng H Z, Xing D Y, Xia K, Zhou S M, Su G, Cai J W 2013 Spintronics (Beijing: Science Press) pp459, 460 (in Chinese)
计量
- 文章访问数: 5538
- PDF下载量: 135
- 被引次数: 0