搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢负离子在磁场和金属面附近电子通量分布的研究

唐田田 张朝民 张敏

引用本文:
Citation:

氢负离子在磁场和金属面附近电子通量分布的研究

唐田田, 张朝民, 张敏

Photodetached electron flux of H- in magnetic field near a metal surface

Tang Tian-Tian, Zhang Chao-Min, Zhang Min
PDF
导出引用
  • 利用半经典开轨道理论, 研究了磁场和金属面附近氢负离子的剥离电子通量分布, 并揭示了电子通量分布中的振荡结构与经典轨道之间的关系.固定离子到金属面的距离, 研究了不同的磁场强度对电子通量分布的影响. 结果表明, 由于与电子通量分布相联系的剥离电子的经典轨迹增加, 随着磁场强度的增加, 通量分布变得复杂. 此外发现剥离电子的能量变化也会影响电子通量分布. 因此可以通过改变磁场强度大小和剥离电子的能量来调控剥离电子通量分布和干涉图样. 研究结果对于理解负离子在外场、表面附近的电子流通量和剥离电子干涉图样问题以及将来实验研究负离子的光剥离显微问题都可以提供一定的参考.
    The photodetached electron flux of H- in magnetic field near a metal surface is studied with a semi-classical open theory, and the relation between the electron flux distribution and classical trajectory is also revealed. The electron flux distributions are calculated at various magnetic field strengths, with a ion-surface distance given. The results show that with the increase of magnetic field strength, the interference pattern in the flux distribution becomes much more complicated because the number of the classical trajectories of the detached electrons contributing to the electron flux distribution increases. In addition, we find that as the energy of detached electron changes, the detached-electron flux distribution changes accordingly. Therefore, the interference pattern in the detached-electron flux distribution can be controlled by adjusting the magnetic field strength and the energy of detached electron. Our study will provide a new understanding of photo-detachment microscopy of anion in external field and surface, and can be used to guide the future experimental research on the anion photo-detachment microscopy.
    [1]

    Du M L, Delos J B 1988 Phys. Rev. A 38 1896

    [2]

    Du M L, Delos J B 1988 Phys. Rev. A 38 1913

    [3]

    Holle A, Wiebusch G, Main J, Hager B, Rottke H 1986 Phys. Rev. Lett. 56 2594

    [4]

    Blondel C, Delsart C, Dulieu F 1996 Phys. Rev. Lett. 77 3755

    [5]

    Blondel C, Delsart C 2001 Phys. Rev. A 64 052504

    [6]

    Du M L 1989 Phys. Rev. A 40 4983

    [7]

    Kramer T, Bracher C, Kleber M 2001 Europhys. Lett. 56 471

    [8]

    Bracher C, Kramer T, Delos J B 2006 Phys. Rev. A 73 062114

    [9]

    Bracher C, Delos J B 2006 Phys. Rev. Lett. 96 100404

    [10]

    Gao S, Yang G C, Lin S L 2007 Eur. Phys. J. D 42 189

    [11]

    Song X H, Lin S L 2003 Acta Phys. Sin. 52 1611 (in Chinese) [宋晓红, 林圣路 2003 物理学报 52 1611]

    [12]

    Zhao L B, Delos J B 2010 Phys. Rev. A 81 053417

    [13]

    Huang K Y, Wang D H 2010 Acta Phys. Sin. 59 932 (in Chinese) [黄凯云, 王德华 2010 物理学报 59 932]

    [14]

    Tang T T, Wang D H, Huang K Y, Wang S S 2012 Acta Phys. Sin. 61 063202 (in Chinese) [唐田田, 王德华, 黄凯云, 王姗姗 2012 物理学报 61 063202]

    [15]

    Wang D H, Tang T T 2010 J. Electron Spectrosc. Relat. Phenom. 177 30

    [16]

    Yang B C, Du M L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 035002

    [17]

    Peters A D, Jaffé C, Delos J B 1997 Phys. Rev. A 56 331

    [18]

    Afaq A, Du M L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1309

  • [1]

    Du M L, Delos J B 1988 Phys. Rev. A 38 1896

    [2]

    Du M L, Delos J B 1988 Phys. Rev. A 38 1913

    [3]

    Holle A, Wiebusch G, Main J, Hager B, Rottke H 1986 Phys. Rev. Lett. 56 2594

    [4]

    Blondel C, Delsart C, Dulieu F 1996 Phys. Rev. Lett. 77 3755

    [5]

    Blondel C, Delsart C 2001 Phys. Rev. A 64 052504

    [6]

    Du M L 1989 Phys. Rev. A 40 4983

    [7]

    Kramer T, Bracher C, Kleber M 2001 Europhys. Lett. 56 471

    [8]

    Bracher C, Kramer T, Delos J B 2006 Phys. Rev. A 73 062114

    [9]

    Bracher C, Delos J B 2006 Phys. Rev. Lett. 96 100404

    [10]

    Gao S, Yang G C, Lin S L 2007 Eur. Phys. J. D 42 189

    [11]

    Song X H, Lin S L 2003 Acta Phys. Sin. 52 1611 (in Chinese) [宋晓红, 林圣路 2003 物理学报 52 1611]

    [12]

    Zhao L B, Delos J B 2010 Phys. Rev. A 81 053417

    [13]

    Huang K Y, Wang D H 2010 Acta Phys. Sin. 59 932 (in Chinese) [黄凯云, 王德华 2010 物理学报 59 932]

    [14]

    Tang T T, Wang D H, Huang K Y, Wang S S 2012 Acta Phys. Sin. 61 063202 (in Chinese) [唐田田, 王德华, 黄凯云, 王姗姗 2012 物理学报 61 063202]

    [15]

    Wang D H, Tang T T 2010 J. Electron Spectrosc. Relat. Phenom. 177 30

    [16]

    Yang B C, Du M L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 035002

    [17]

    Peters A D, Jaffé C, Delos J B 1997 Phys. Rev. A 56 331

    [18]

    Afaq A, Du M L 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1309

计量
  • 文章访问数:  3221
  • PDF下载量:  557
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-27
  • 修回日期:  2013-02-27
  • 刊出日期:  2013-06-05

氢负离子在磁场和金属面附近电子通量分布的研究

  • 1. 南山学院基础教学部, 烟台 265713

摘要: 利用半经典开轨道理论, 研究了磁场和金属面附近氢负离子的剥离电子通量分布, 并揭示了电子通量分布中的振荡结构与经典轨道之间的关系.固定离子到金属面的距离, 研究了不同的磁场强度对电子通量分布的影响. 结果表明, 由于与电子通量分布相联系的剥离电子的经典轨迹增加, 随着磁场强度的增加, 通量分布变得复杂. 此外发现剥离电子的能量变化也会影响电子通量分布. 因此可以通过改变磁场强度大小和剥离电子的能量来调控剥离电子通量分布和干涉图样. 研究结果对于理解负离子在外场、表面附近的电子流通量和剥离电子干涉图样问题以及将来实验研究负离子的光剥离显微问题都可以提供一定的参考.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回