搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四面体磁梯度张量系统的载体磁干扰补偿方法

于振涛 吕俊伟 毕波 周静

引用本文:
Citation:

四面体磁梯度张量系统的载体磁干扰补偿方法

于振涛, 吕俊伟, 毕波, 周静

A vehicle magnetic noise compensation method for the tetrahedron magnetic gradiometer

Yu Zhen-Tao, Lü Jun-Wei, Bi Bo, Zhou Jing
PDF
导出引用
  • 针对搭载于水下无人航行器(UUV)的四面体磁梯度张量系统易受载体磁场干扰的问题,提出了一种载体磁干扰补偿方法. 该方法在载体磁干扰产生机理的基础上,利用磁梯度张量差分测量算法融合四面体磁梯度张量系统中四个矢量磁力仪的载体磁干扰,建立了磁梯度张量系统载体磁干扰数学模型;然后在此数学模型的基础上提出了磁干扰补偿方法,并根据磁梯度张量9分量的数学关系提出了补偿参数辨识方法;最后通过仿真实验对方法进行了验证,结果表明该补偿方法可以有效补偿磁梯度张量系统95.9%的载体磁干扰. 该方法利用补偿参数对磁梯度张量系统的输出值直接进行磁干扰补偿,从理论上解决了磁梯度张量系统中各个矢量磁力仪载体磁干扰的统一补偿问题.
    The magnetic noise of a vehicle has a strong impact on the magnetic gradiometer, so a vehicle magnetic noise compensation method is proposed. Based on the production mechanism of the vehicle magnetic noise, a mathematic model for vehicle magnetic noise on the tetrahedron magnetic gradiometer is proposed, in which the difference algorithm of the magnetic gradiometer is used to fuse the magnetic noise of each vector magnetometer. In terms of this mathematic model, we propose the noise compensation algorithm and the compensation coefficients recognition method by using the mathematic relations of the 9 components of the magnetic gradient tensor. Simulation results show that the proposed method can efficiently compensate 95.9% vehicle magnetic noise on the magnetic gradiometer. This method can compensate vehicle magnetic noise on the magnetic gradiometer output directly by the compensation coefficients, and realize the holistic noise compensation of the magnetic gradiometer theoretically.
    • 基金项目: 国家高技术研究发展计划(批准号:2010AAJ211)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2010AAJ211).
    [1]

    Stolz R, Zakosarenko V, Sehulz M 2006 The Leading Edge 25 178

    [2]

    Keene M N, Exon N J, Satchell J S 1999 IEEE Transactions on Applied Superconductivity 9 3048

    [3]

    Yang Y T, Shi Z Y 2008 Aeta Armamentarii 29 1485 (in Chinese) [杨云涛, 石志勇 2008 兵工学报 29 1485]

    [4]

    Tolles W E, Mineola N Y 1995 US Patent 2 706 801 [1955-04-19]

    [5]

    He Y Z 2013 Acta Phys. Sin. 62 217502 (in Chinese) [何永周 2013 物理学报 62 217502]

    [6]

    Jiang F Y, Wang N, Jin Y R, Deng H, Tian Y, Lang P L, Li J, Chen Y F, Zheng D N 2013 Chin. Phys. B 22 047401

    [7]

    Allen G, Sulzberger G, Bono J T, Pray J S, Clem T R 2005 Proceedings of the OCEANS'05 MTS/IEEE Conference Washington DC, US Republic, September 17-23, 2005 p1956

    [8]

    Pei Y H, Yeo H G 2009 Proceedings of the OCEANS'09 MTS/IEEE Conference Biloxi, Mississippi Republic, October 26-29, 2009 p1

    [9]

    Pei Y H, Yeo H G 2006 Proceedings of the OCEANS'06 MTS/IEEE Conference Singapore Republic, September 18-21, 2006 p1

    [10]

    Bono J T, Overway D J, Wynn W M 2013 Proceedings of the OCEANS'03 MTS/IEEE Conference San Diego, California Republic, September 22-26, 2003 p2018

    [11]

    Yang X Y, Huang S G 2004 Chin. J. Sci. Instrum. 25 466 (in Chinese) [杨新勇, 黄圣国 2004 仪器仪表学报 25 466]

    [12]

    Chen D X, Pan M C, Luo F L 2006 Chin. J. Sens. Actuators 19 642 (in Chinese) [陈棣湘, 潘孟春, 罗飞路 2006 传感技术学报 19 642]

    [13]

    Fitzgibbon A W, Pilu M, Fisher R B 1999 IEEE Transactions on Pattern Analysis and Machine Intelligence 21 476

    [14]

    Zhang X M, Zhao Y 2009 Chin. J. Sci. Instrum. 30 2438 (in Chinese) [张晓明, 赵剡 2009 仪器仪表学报 30 2438]

    [15]

    Khurana K K, Kepko E L, Kivelson M G, Elphic R C 1996 IEEE Transactions on Magnetics 32 5193

  • [1]

    Stolz R, Zakosarenko V, Sehulz M 2006 The Leading Edge 25 178

    [2]

    Keene M N, Exon N J, Satchell J S 1999 IEEE Transactions on Applied Superconductivity 9 3048

    [3]

    Yang Y T, Shi Z Y 2008 Aeta Armamentarii 29 1485 (in Chinese) [杨云涛, 石志勇 2008 兵工学报 29 1485]

    [4]

    Tolles W E, Mineola N Y 1995 US Patent 2 706 801 [1955-04-19]

    [5]

    He Y Z 2013 Acta Phys. Sin. 62 217502 (in Chinese) [何永周 2013 物理学报 62 217502]

    [6]

    Jiang F Y, Wang N, Jin Y R, Deng H, Tian Y, Lang P L, Li J, Chen Y F, Zheng D N 2013 Chin. Phys. B 22 047401

    [7]

    Allen G, Sulzberger G, Bono J T, Pray J S, Clem T R 2005 Proceedings of the OCEANS'05 MTS/IEEE Conference Washington DC, US Republic, September 17-23, 2005 p1956

    [8]

    Pei Y H, Yeo H G 2009 Proceedings of the OCEANS'09 MTS/IEEE Conference Biloxi, Mississippi Republic, October 26-29, 2009 p1

    [9]

    Pei Y H, Yeo H G 2006 Proceedings of the OCEANS'06 MTS/IEEE Conference Singapore Republic, September 18-21, 2006 p1

    [10]

    Bono J T, Overway D J, Wynn W M 2013 Proceedings of the OCEANS'03 MTS/IEEE Conference San Diego, California Republic, September 22-26, 2003 p2018

    [11]

    Yang X Y, Huang S G 2004 Chin. J. Sci. Instrum. 25 466 (in Chinese) [杨新勇, 黄圣国 2004 仪器仪表学报 25 466]

    [12]

    Chen D X, Pan M C, Luo F L 2006 Chin. J. Sens. Actuators 19 642 (in Chinese) [陈棣湘, 潘孟春, 罗飞路 2006 传感技术学报 19 642]

    [13]

    Fitzgibbon A W, Pilu M, Fisher R B 1999 IEEE Transactions on Pattern Analysis and Machine Intelligence 21 476

    [14]

    Zhang X M, Zhao Y 2009 Chin. J. Sci. Instrum. 30 2438 (in Chinese) [张晓明, 赵剡 2009 仪器仪表学报 30 2438]

    [15]

    Khurana K K, Kepko E L, Kivelson M G, Elphic R C 1996 IEEE Transactions on Magnetics 32 5193

  • [1] 霍冠忠, 苏超, 王可, 叶晴莹, 庄彬, 陈水源, 黄志高. 铁酸铋薄膜光电流的磁场调制研究. 物理学报, 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [2] 魏连锁, 李华, 吴迪, 郭媛. 基于BP神经网络模型时钟同步误差补偿算法. 物理学报, 2021, 70(11): 114203. doi: 10.7498/aps.70.20201641
    [3] 崔翔. 电流连续的细导体段模型的磁场及电感. 物理学报, 2020, 69(3): 034101. doi: 10.7498/aps.69.20191212
    [4] 黄科, 李松, 马跃, 田昕, 周辉, 张智宇. 单光子激光测距的漂移误差理论模型及补偿方法. 物理学报, 2018, 67(6): 064205. doi: 10.7498/aps.67.20172228
    [5] 吕俊伟, 迟铖, 于振涛, 毕波, 宋庆善. 磁梯度张量不变量的椭圆误差消除方法研究. 物理学报, 2015, 64(19): 190701. doi: 10.7498/aps.64.190701
    [6] 曾喆昭. 不确定混沌系统的径向基函数神经网络反馈补偿控制. 物理学报, 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [7] 韩敏, 许美玲. 一种基于误差补偿的多元混沌时间序列混合预测模型. 物理学报, 2013, 62(12): 120510. doi: 10.7498/aps.62.120510
    [8] 张红, 张春元, 张慧亮, 刘建军. 外加磁场下抛物型量子线中的带电激子. 物理学报, 2011, 60(7): 077301. doi: 10.7498/aps.60.077301
    [9] 邹秀, 邹滨雁, 刘惠平. 外加磁场对碰撞射频鞘层离子能量分布的影响. 物理学报, 2009, 58(9): 6392-6396. doi: 10.7498/aps.58.6392
    [10] 陈杰, 鲁习文. 基于磁荷面分布的舰船磁场预测方法. 物理学报, 2009, 58(6): 3839-3843. doi: 10.7498/aps.58.3839
    [11] 汪津, 华杰, 丁桂英, 常喜, 张刚, 姜文龙. 磁场作用下的有机电致发光. 物理学报, 2009, 58(10): 7272-7277. doi: 10.7498/aps.58.7272
    [12] 张雯. 磁场微重力效应的研究. 物理学报, 2009, 58(4): 2405-2409. doi: 10.7498/aps.58.2405
    [13] 罗成林, 杨兵初, 戎茂华. 磁场对滤纸上Zn电解沉积物形貌的影响. 物理学报, 2006, 55(7): 3778-3784. doi: 10.7498/aps.55.3778
    [14] 张助华, 郭万林, 郭宇锋. 轴向磁场对碳纳米管电子性质的影响. 物理学报, 2006, 55(12): 6526-6531. doi: 10.7498/aps.55.6526
    [15] 韩 逸, 班春燕, 巴启先, 王书晗, 崔建忠. 磁场对液态铝和固态铁界面微观组织的影响. 物理学报, 2005, 54(6): 2955-2960. doi: 10.7498/aps.54.2955
    [16] 李玉现, 刘建军, 李伯臧. 量子点接触中的电导与热功率:磁场与温度的影响. 物理学报, 2005, 54(3): 1366-1369. doi: 10.7498/aps.54.1366
    [17] 黄维清, 陈克求, 帅志刚, 王玲玲, 胡望宇. 磁耦合效应对半无限超晶格中表面电子态的影响. 物理学报, 2004, 53(7): 2330-2335. doi: 10.7498/aps.53.2330
    [18] 欧阳世根, 关毅, 佘卫龙. 旋转超导体中的电流与电磁场. 物理学报, 2002, 51(7): 1596-1599. doi: 10.7498/aps.51.1596
    [19] 陈正林, 张杰. 对超热电子诱生的磁场分布的估算. 物理学报, 2001, 50(4): 735-740. doi: 10.7498/aps.50.735
    [20] 陈正林, 张 杰. 对超热电子诱生的磁场分布的估算. 物理学报, 2000, 49(11): 2180-2185. doi: 10.7498/aps.49.2180
计量
  • 文章访问数:  6141
  • PDF下载量:  577
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-07
  • 修回日期:  2014-02-15
  • 刊出日期:  2014-06-05

/

返回文章
返回