-
磁传感器在导航、交通运输、机器人、自动化、医疗设备等领域有着广泛的应用, 对传感器的性能要求越来越高. 本文提出了一种具有两种工作模式的磁传感器, 兼具大量程和低噪声两种优点. 该传感器由一个640 μH磁芯绕线电感与一个100 pF电容串联构成. 传感器工作于阻抗模式时, 具有噪声低的优点, 当传感器驱动信号频率为1 MHz, 偏置磁场为7.66 Oe (1 Oe = 103/(4π) A/m)时, 传感器等效磁噪声水平最小, 约为200 $ {\text{pT/}}\sqrt {{\text{Hz}}} @1 {\text{Hz}} $, 线性范围为2 Oe; 工作于频率模式时, 具有量程大的优点, 量程可以达到25 Oe, 当偏置磁场为7.66 Oe时, 传感器灵敏度最大, 约为47 kHz/Oe. 该传感器与多种型号的商用磁传感器相比, 其低噪声、大量程、低成本的优点依然具有显著的市场竞争力.Magnetic sensors are widely used in the fields of navigation, transportation, robotics, automation, and medical equipment, and the performance requirements of sensors are getting higher and higher. In this work, a bimodal magnetic sensor with two operating modes, which has the advantages of large range and low noise, is proposed. The sensor consists of a 640 μH core-wound inductor in series with a 100 pF capacitor. When the external magnetic field changes, the magnetization state of the iron core in the inductor will change, the inductance value will change accordingly. The resonant frequency and impedance value of the sensor will also change with the magnetic field. In this work, the giant magnetic impedance characteristics of an RLC series circuit are analyzed, and the relationship between magnetic permeability, inductance value, and external magnetic field is established, and the series resonant frequency of the circuit is simulated to calculate the characteristics of the circuit with respect to the inductance variation.Then, two testing systems are set up to test the relationship between resonance frequency and magnetic field, as well as the noise characteristics of the sensor. In the impedance mode, the effects of capacitance, drive signal frequency, and static bias magnetic field on the sensor noise floor are first analyzed to determine the optimal parameters of the sensor. When the series capacitance of the sensor is 100 pF, the drive signal frequency will be 1 MHz and the static bias magnetic field will be 7.66 Oe. The sensor has the optimal performance with an equivalent noise floor of about $ {200}\;{\text{pT/}}\sqrt {{\text{Hz}}} @1 {\text{Hz}} $, an impedance rate of change sensitivity of 160.6%/Oe, and a linear range of about 2 Oe. In the frequency mode, the sensor operates linearly up to 25 Oe. A logistic regression model is used to fit the resonant frequency to the magnetic field variation, and the fitted value reaches 0.9974. When the static bias magnetic field is about 7.66 Oe, the sensor sensitivity will be about 47 kHz/Oe. Moreover, compared with other common types of magnetic sensors on the market, this sensor has the commercial component cost of only ¥10, and excellent performance, and huge market potential.
-
Keywords:
- magnetic sensor /
- bimodal /
- low noise /
- wide-range
-
图 6 不同条件下的最小等效磁噪声与激励信号频率关系 (a) 电容为91 pF; (b) 电容为100 pF; (c) 电容为110 pF; (d) 电容为120 pF
Fig. 6. Relationship between minimum equivalent magnetic noise and frequency of excitation signal under different conditions: (a) The capacitance is 91 pF; (b) the capacitance is 100 pF; (c) the capacitance is 110 pF; (d) the capacitance is 120 pF.
图 7 GMI传感器特性 (a)不同频率激励信号时GMI传感器的阻抗随磁场的变化; (b) 不同频率激励信号时GMI传感器阻抗变化率随磁场的变化; (c) 不同频率激励信号时GMI传感器阻抗变化率灵敏度随磁场的变化; (d) 在施加3 nT和300 pT的微弱磁信号时GMI传感器的等效磁噪声幅度谱; (e) 传感器阻抗随外加磁场的变化以及线性拟合曲线; (f) 施加1 Hz正弦交流磁信号时传感器的阻抗变化量随磁场强度的变化
Fig. 7. GMI sensor characteristics: (a) The impedance of GMI sensor vs. magnetic field for different frequency excitation signals; (b) the impedance variation of GMI sensor vs. magnetic field for different frequency excitation signals; (c) impedance change rate sensitivity of GMI sensor vs. magnetic field for different frequency excitation signals; (d) the equivalent magnetic noise amplitude spectrum of the GMI sensor when a weak magnetic signal of 3 nT or 300 pT is applied; (e) sensor impedance vs. applied magnetic field and corresponding linear fitting curve; (f) sensor impedance variation vs. magnetic field intensity when 1 Hz sinusoidal AC magnetic signal is applied.
表 1 最小等效磁噪声及其对应参数
Table 1. Minimum equivalent magnetic noise and its corresponding parameters.
电容值/pF 最小等效磁
噪声/nT激励信号
频率/MHz偏置磁场/Oe 91 0.55 0.8 7.66 100 0.49 1 7.66 110 0.75 1 5.9 120 0.59 1 7.66 表 2 双模态磁传感器与商用磁传感器对比
Table 2. Comparison of dual-mode magnetic sensor and commercial magnetic sensor.
类型 型号 厂家 本底噪声/
(nT@1 Hz)量程/
±Oe灵敏度 截止频率 价格
¥AMR MMC5983 MA 美新半导体 40 8 — 1 kHz ~34 AMR HMC1001 霍尼韦尔 0.5 5 3.2 mV/(V·Oe) 5 MHz ~100 GMR AA002 NVE 2 15 36 mV/(V·Oe) 1 MHz ~150 TMR TMR2901 多维 2 8 25 mV/(V·Oe) — ~350 TMR TLI5590 - A6 W 英飞凌 — 50 1.85 mV/(V·Oe) 5 kHz ~20 TMR CT815 X Allegro — 80 5 mV/(V·Oe) 100 Hz ~10 Microfluxgate DRV425 德州仪器 4 20 1.22 mA/Oe 32 kHz ~30 Fluxgate Mag651 Bartington ~0.02 0.6 5 V/Oe 5 Hz >35000 Hall DRV5055
A1/Z1德州仪器 130 210 10 mV/Oe 20 kHz ~10 GMI MI-CB-1 DJ Aichi ~0.1 0.02 500 V/Oe 10 kHz ~10000 GMI GC-CC-101 A 国创智能 ~0.06 0.6 — 2 kHz ~5000 LC串联磁传感器 阻抗模式 — ~0.2 6—8 Oe 160.6%/Oe — ~10 频率模式 — — 5—30 Oe 47 kHz/Oe(max) — ~10 -
[1] Auster H U, Glassmeier K H, Magnes W, Aydogar O, Baumjohann W, Constantinescu D, Fischer D, Fornacon K H, Georgescu E, Harvey P, Hillenmaier O, Kroth R, Ludlam M, Narita Y, Nakamura R, Okrafka K, Plaschke F, Richter I, Schwarzl H, Stoll B, Valavanoglou A, Wiedemann M 2008 Space Sci. Rev. 141 235Google Scholar
[2] Du A M, Zhang Y, Li H Y, Qiao D H, Yi Z, Zhang T L, Meng L F, Ge Y S, Luo H, Zhao L, Sun S Q, Ou J M, Li Z, Feng X, Dai J L 2020 Space Sci. Rev. 216 135Google Scholar
[3] Fimbombaya H S, Mvungi N H, Hamisi N Y, Iddi H U 2018 Modell. Simul. Eng. 2018 2591304
[4] Kim H J, Hirayama H, Kim S, Han K J, Zhang R, Choi J W 2017 IEEE Access 5 21264Google Scholar
[5] Kuwahata A, Tanaka R, Matsuda S, Amada E, Irino T, Mayanagi S, Chikaki S, Saito I, Tanabe N, Kawakubo H, Takeuchi H, Kitagawa Y, Kusakabe M, Sekino M 2020 Sci. Rep. 10 1798Google Scholar
[6] Limes M E, Foley E L, Kornack T W, Caliga S, McBride S, Braun A, Lee W, Lucivero V G, Romalis M V 2020 Phys. Rev. Appl. 14 011002Google Scholar
[7] Liu X Y, Liu C H, Han W, Pong P W T 2019 IEEE Sens. J. 19 1683Google Scholar
[8] Wang S X, Peng D L, Wu Z Y 2019 IEEE Sens. J. 19 9818Google Scholar
[9] Sekino M, Kuwahata A, Ookubo T, Shiozawa M, Ohashi K, Kaneko M, Saito I, Inoue Y, Ohsaki H, Takei H, Kusakabe M 2018 Sci. Rep. 8 1195Google Scholar
[10] Tsukada K, Hayashi M, Nakamura Y, Sakai K, Kiwa T 2018 IEEE Trans. Magn. 54 6202205
[11] Ennen I, Kappe D, Rempel T, Glenske C, Hütten A 2016 Sensors 16 904Google Scholar
[12] 韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥 2022 物理学报 71 238502Google Scholar
Han X F, Zhang Y, Feng J F, Chen C A, Deng H, Huang H, Guo J H, Liang Y, Si W R, Jiang A F, Wei H X 2022 Acta Phys. Sin. 71 238502Google Scholar
[13] Han X F, Zhang Y, Wang Y Z, Huang L, Ma Q L, Liu H F, Wan C H, Feng J F, Yin L, Yu G Q, Yu T, Yan Y 2021 Chin. Phys. Lett. 38 128501Google Scholar
[14] Khan M A, Sun J, Li B D, Przybysz A, Kosel J 2021 Eng. Res. Express 3 022005Google Scholar
[15] Lenz J, Edelstein A S 2006 IEEE Sens. J. 6 631Google Scholar
[16] Narod B B, Miles D M 2024 Geosci. Instrum. Methods Data Syst. 13 131Google Scholar
[17] Wang Z G, Wen T, Su W, Hu C J, Chen Y C, Hu Z Q, Wu J G, Zhou Z Y, Liu M 2021 IEEE Trans. Ind. Electron. 68 7577Google Scholar
[18] Panina L V, Mohri K 1994 Appl. Phys. Lett. 65 1189Google Scholar
[19] Phan M H, Peng H X 2008 Prog. Mater Sci. 53 323Google Scholar
[20] Kurlyandskaya G V, Sánchez M L, Hernando B, Prida V M, Gorria P, Tejedor M 2003 Appl. Phys. Lett. 82 3053Google Scholar
[21] Panina L V, Mohri K, Bushida K, Noda M 1994 J. Appl. Phys. 76 6198Google Scholar
[22] Phan M H, Peng H X 2008 Prog. Mater Sci. 53 323Google Scholar
[23] Vazquez M, Knobel M, Sanchez M L, Valenzuela R, Zhukov A P 1997 Sens. Actuator A Phys. 59 20Google Scholar
[24] Butta M, Yamashita S, Sasada I 2011 IEEE Trans. Magn. 47 3748Google Scholar
[25] Malatek M, Dufay B, Saez S, Dolabdjian C 2013 Sens. Actuator A Phys. 204 20Google Scholar
[26] Malátek M, Kraus L 2010 Sens. Actuator A Phys. 164 41Google Scholar
[27] Dufay B, Saez S, Dolabdjian C P, Yelon A, Ménard D 2013 IEEE Sens. J. 13 379Google Scholar
[28] Ding L H, Saez S, Dolabdjian C, Melo L G C, Yelon A, Ménard D 2009 IEEE Sens. J. 9 159Google Scholar
[29] Dufay B, Saez S, Dolabdjian C, Yelon A, Ménard D 2013 IEEE Trans. Magn. 49 85Google Scholar
[30] Dufay B, Saez S, Dolabdjian C P, Yelon A, Ménard D 2011 IEEE Sens. J. 11 1317Google Scholar
[31] Melo L G C, Ménard D, Yelon A, Ding L, Saez S, Dolabdjian C 2008 J. Appl. Phys. 103 033903Google Scholar
[32] Traoré P S, Asfour A, Yonnet J P, Dolabdjian C P 2017 IEEE Sens. J. 17 6175Google Scholar
[33] Traore P S, Asfour A, Yonnet J P 2021 Sens. Actuator A Phys. 331 112972Google Scholar
[34] Jin F, Wang J C, Zhu L, Mo W Q, Dong K F, Song J L 2019 IEEE Sens. J. 19 9172Google Scholar
[35] Fernández E, García-Arribas A, Barandiarán J M, Svalov A V, Kurlyandskaya G V, Dolabdjian C P 2015 IEEE Sens. J. 15 6707Google Scholar
[36] Kim J Y, Cho I K, Lee H J, Lee J, Moon J I, Kim S M, Kim S W, Ahn S, Kim K 2020 IEEE Access 8 193091Google Scholar
计量
- 文章访问数: 252
- PDF下载量: 10
- 被引次数: 0