搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于巨磁阻抗效应的双模态型低噪声大量程磁传感器

温涛 马宇航 王德全 谌浩然 李艳芳 许洋 王志广

引用本文:
Citation:

基于巨磁阻抗效应的双模态型低噪声大量程磁传感器

温涛, 马宇航, 王德全, 谌浩然, 李艳芳, 许洋, 王志广

Dual-mode Low Noise Large Range Magnetic Sensor based on Giant Magnetoimpedance Effect

Wen Tao, Ma Yu-Hang, Wang De-Quan, Chen Hao-Ran, Li Yan-Fang, Xu Yang, Wang Zhi-Guang
PDF
导出引用
  • 磁传感器在导航、交通运输、机器人、自动化、医疗设备等领域有着广泛的应用,对传感器的性能要求也越来越高。本文中提出了一种具有两种工作模式的磁传感器,兼具大量程和低噪声两种优点。该传感器由一个640μH磁芯绕线电感与一个100pF电容串联构成。传感器工作于阻抗模式时,具有噪声低的优点,当传感器驱动信号频率为1MHz,偏置磁场为7.66Oe时,传感器等效磁噪声水平最小,约为$200 p T / \sqrt{H z} @ 1 H z$,线性范围为2Oe;工作于频率模式时,具有量程大的优点,量程可以达到25Oe,当偏置磁场为7.66Oe时,传感器灵敏度最大,约为47kHz/Oe。该传感器与多种型号的商用磁传感器相比,其低噪声、大量程、低成本的优点依然具有显著的市场竞争力。
    Magnetic sensors are widely used in the fields of navigation, transportation, robotics, automation, and medical equipment, and the performance requirements of sensors are getting higher and higher. In this article, a bimodal magnetic sensor with two advantages of a large number of processes and low noise is proposed. The sensor consists of a 640μH core-wound inductor in series with a 100pF capacitor. When the external magnetic field changes, the magnetization state of the core in the inductor changes, the inductance value also changes, while the resonant frequency and impedance value of the sensor change with the magnetic field.
    In this paper, the giant magnetic impedance characteristics of the RLC series circuit were analyzed, and the relationship between magnetic permeability, inductance value, and external magnetic field was established, and the series resonant frequency of the circuit was simulated to calculate the characteristics of the circuit with respect to the inductance variation.Then, two test systems were set up to test the resonance frequency versus magnetic field and the noise characteristics of the sensor.
    In impedance mode, the effects of capacitance, drive signal frequency, and static bias magnetic field on the sensor noise floor were first analyzed to determine the optimal parameters of the sensor. When the series capacitance of the sensor is 100pF, the drive signal frequency is 1MHz, and the static bias magnetic field is 7.66Oe, the sensor has the optimal performance with an equivalent noise floor of about $200 p T / \sqrt{H z} @ 1 H z$,an impedance rate of change sensitivity of 160.6%/Oe, and a linear range of about 2Oe.In the frequency mode, the sensor operates linearly up to 25Oe, and using a logistic regression model to fit the resonant frequency to the magnetic field variation, the fit reaches 0.9974, and when the static bias magnetic field is about 7.66Oe, the sensor sensitivity is about 47kHz/Oe.
    Not only that, with commercial components costing only ¥10 and excellent performance, the sensor has great market potential compared with other common different kinds of magnetic sensors on the market.
  • [1]

    Auster H U, Glassmeier K H, Magnes W, Aydogar O, Baumjohann W, Constantinescu D, Fischer D, Fornacon K H, Georgescu E, Harvey P, Hillenmaier O, Kroth R, Ludlam M, Narita Y, Nakamura R, Okrafka K, Plaschke F, Richter I, Schwarzl H, Stoll B, Valavanoglou A, Wiedemann M 2008 Space Sci. Rev. 141 235

    [2]

    Du A M, Zhang Y, Li H Y, Qiao D H, Yi Z, Zhang T L, Meng L F, Ge Y S, Luo H, Zhao L, Sun S Q, Ou J M, Li Z, Feng X, Dai J L 2020 Space Sci. Rev. 216 135

    [3]

    Fimbombaya H S, Mvungi N H, Hamisi N Y, Iddi H U 2018 Modell. Simul. Eng. 2018 2591304

    [4]

    Kim H-J, Hirayama H, Kim S, Han K J, Zhang R, Choi J-W 2017 IEEE Access 5 21264

    [5]

    Kuwahata A, Tanaka R, Matsuda S, Amada E, Irino T, Mayanagi S, Chikaki S, Saito I, Tanabe N, Kawakubo H, Takeuchi H, Kitagawa Y, Kusakabe M, Sekino M 2020 Sci. Rep. 10 1798

    [6]

    Limes M E, Foley E L, Kornack T W, Caliga S, McBride S, Braun A, Lee W, Lucivero V G, Romalis M V 2020 Phys. Rev. Appl. 14 011002

    [7]

    Liu X Y, Liu C H, Han W, Pong P W T 2019 IEEE Sens. J. 19 1683

    [8]

    Wang S X, Peng D L, Wu Z Y 2019 IEEE Sens. J. 19 9818

    [9]

    Sekino M, Kuwahata A, Ookubo T, Shiozawa M, Ohashi K, Kaneko M, Saito I, Inoue Y, Ohsaki H, Takei H, Kusakabe M 2018 Sci. Rep. 8 1195

    [10]

    Tsukada K, Hayashi M, Nakamura Y, Sakai K, Kiwa T 2018 IEEE Trans. Magn. 54 6202205

    [11]

    Ennen I, Kappe D, Rempel T, Glenske C, Hütten A 2016 Sensors 16 904

    [12]

    Han X F, Zhang Y, Feng J F, Chen C A, Deng H, Huang H, Guo J H, Liang Y, Si W R, Jiang A F, Wei H X 2022 Acta Phys. Sin. 71 238502

    [13]

    Han X F, Zhang Y, Wang Y Z, Huang L, Ma Q L, Liu H F, Wan C H, Feng J F, Yin L, Yu G Q, Yu T, Yan Y 2021 Chin. Phys. Lett. 38 128501

    [14]

    Khan M A, Sun J, Li B D, Przybysz A, Kosel J 2021 Eng. Res. Express 3 022005

    [15]

    Lenz J, Edelstein A S 2006 IEEE Sens. J. 6 631

    [16]

    Narod B B, Miles D M 2024 Geosci. Instrum. Methods Data Syst. 13 131

    [17]

    Wang Z G, Wen T, Su W, Hu C J, Chen Y C, Hu Z Q, Wu J G, Zhou Z Y, Liu M 2021 IEEE Trans. Ind. Electron. 68 7577

    [18]

    Panina L V, Mohri K 1994 Appl. Phys. Lett. 65 1189

    [19]

    Phan M-H, Peng H-X 2008 Prog. Mater Sci. 53 323

    [20]

    Kurlyandskaya G V, Sánchez M L, Hernando B, Prida V M, Gorria P, Tejedor M 2003 Appl. Phys. Lett. 82 3053

    [21]

    Panina L V, Mohri K, Bushida K, Noda M 1994 J. Appl. Phys. 76 6198

    [22]

    Phan M H, Peng H X 2008 Prog. Mater Sci. 53 323

    [23]

    Vazquez M, Knobel M, Sanchez M L, Valenzuela R, Zhukov A P 1997 Sens. Actuator A Phys. 59 20

    [24]

    Butta M, Yamashita S, Sasada I 2011 IEEE Trans. Magn. 47 3748

    [25]

    Malatek M, Dufay B, Saez S, Dolabdjian C 2013 Sens. Actuator A Phys. 204 20

    [26]

    Malátek M, Kraus L 2010 Sens. Actuator A Phys. 164 41

    [27]

    Dufay B, Saez S, Dolabdjian C P, Yelon A, Ménard D 2013 IEEE Sens. J. 13 379

    [28]

    Ding L H, Saez S, Dolabdjian C, Melo L G C, Yelon A, Ménard D 2009 IEEE Sens. J. 9 159

    [29]

    Dufay B, Saez S, Dolabdjian C, Yelon A, Ménard D 2013 IEEE Trans. Magn. 49 85

    [30]

    Dufay B, Saez S, Dolabdjian C P, Yelon A, Ménard D 2011 IEEE Sens. J. 11 1317

    [31]

    Melo L G C, Ménard D, Yelon A, Ding L, Saez S, Dolabdjian C 2008 J. Appl. Phys. 103 033903

    [32]

    Traoré P S, Asfour A, Yonnet J P, Dolabdjian C P 2017 IEEE Sens. J. 17 6175

    [33]

    Traore P S, Asfour A, Yonnet J-P 2021 Sens. Actuator A Phys. 331 112972

    [34]

    Jin F, Wang J C, Zhu L, Mo W Q, Dong K F, Song J L 2019 IEEE Sens. J. 19 9172

    [35]

    Fernández E, García-Arribas A, Barandiarán J M, Svalov A V, Kurlyandskaya G V, Dolabdjian C P 2015 IEEE Sens. J. 15 6707

    [36]

    Kim J Y, Cho I K, Lee H J, Lee J, Moon J I, Kim S M, Kim S W, Ahn S, Kim K 2020 IEEE Access 8 193091

  • [1] 李响, 王嘉伟, 李番, 黄天时, 党昊, 赵得胜, 田龙, 史少平, 李卫, 尹王保, 郑耀辉. 面向地基引力波探测频段的超低噪声激光强度噪声评估系统研究. 物理学报, doi: 10.7498/aps.74.20241319
    [2] 武列列, 任益充, 薛飞. 基于铁磁扭摆振子的磁场测量及其应用. 物理学报, doi: 10.7498/aps.74.20241538
    [3] 李培, 董志勇, 郭红霞, 张凤祁, 郭亚鑫, 彭治钢, 贺朝会. SiGe BiCMOS低噪声放大器激光单粒子效应研究. 物理学报, doi: 10.7498/aps.73.20231451
    [4] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器. 物理学报, doi: 10.7498/aps.73.20240560
    [5] 王嘉伟, 李健博, 李番, 郑立昂, 高子超, 安炳南, 马正磊, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的程控低噪声高精度电压基准源. 物理学报, doi: 10.7498/aps.72.20222119
    [6] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统. 物理学报, doi: 10.7498/aps.71.20220120
    [7] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法. 物理学报, doi: 10.7498/aps.71.20211253
    [8] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法. 物理学报, doi: 10.7498/aps.70.20211253
    [9] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, doi: 10.7498/aps.70.20201925
    [10] 刘磊, 徐志博, 钱文硕, 李文杰, 谢芳, 钟志, 单明广. 双合成波长数字全息低噪声分级解包裹方法. 物理学报, doi: 10.7498/aps.70.20210669
    [11] 韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇. 低噪声超导量子干涉器件磁强计设计与制备. 物理学报, doi: 10.7498/aps.68.20190483
    [12] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术. 物理学报, doi: 10.7498/aps.68.20190238
    [13] 关佳, 顾翊晟, 朱成杰, 羊亚平. 利用相干制备的三能级原子介质实现低噪声弱光相位操控. 物理学报, doi: 10.7498/aps.66.024205
    [14] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, doi: 10.7498/aps.65.057501
    [15] 杨波, 卜雄洙, 王新征, 于靖. 高斯噪声和弱正弦信号驱动的时间差型磁通门传感器. 物理学报, doi: 10.7498/aps.63.200702
    [16] 于振涛, 吕俊伟, 毕波, 周静. 四面体磁梯度张量系统的载体磁干扰补偿方法. 物理学报, doi: 10.7498/aps.63.110702
    [17] 王文波, 汪祥莉. 噪声模态单元预判的经验模态分解脉冲星信号消噪. 物理学报, doi: 10.7498/aps.62.209701
    [18] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究. 物理学报, doi: 10.7498/aps.62.188501
    [19] 吴少兵, 陈实, 李海, 杨晓非. TMR与GMR传感器1/f噪声的研究进展. 物理学报, doi: 10.7498/aps.61.097504
    [20] 王金东, 路 巍, 赵 峰, 刘小宝, 郭邦红, 张 静, 黄宇娴, 路轶群, 刘颂豪. 稳定的低噪声自由空间量子密钥分配实验研究. 物理学报, doi: 10.7498/aps.57.4214
计量
  • 文章访问数:  84
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-11

/

返回文章
返回