-
磁传感器在导航、交通运输、机器人、自动化、医疗设备等领域有着广泛的应用,对传感器的性能要求也越来越高。本文中提出了一种具有两种工作模式的磁传感器,兼具大量程和低噪声两种优点。该传感器由一个640μH磁芯绕线电感与一个100pF电容串联构成。传感器工作于阻抗模式时,具有噪声低的优点,当传感器驱动信号频率为1MHz,偏置磁场为7.66Oe时,传感器等效磁噪声水平最小,约为$200 p T / \sqrt{H z} @ 1 H z$,线性范围为2Oe;工作于频率模式时,具有量程大的优点,量程可以达到25Oe,当偏置磁场为7.66Oe时,传感器灵敏度最大,约为47kHz/Oe。该传感器与多种型号的商用磁传感器相比,其低噪声、大量程、低成本的优点依然具有显著的市场竞争力。Magnetic sensors are widely used in the fields of navigation, transportation, robotics, automation, and medical equipment, and the performance requirements of sensors are getting higher and higher. In this article, a bimodal magnetic sensor with two advantages of a large number of processes and low noise is proposed. The sensor consists of a 640μH core-wound inductor in series with a 100pF capacitor. When the external magnetic field changes, the magnetization state of the core in the inductor changes, the inductance value also changes, while the resonant frequency and impedance value of the sensor change with the magnetic field.
In this paper, the giant magnetic impedance characteristics of the RLC series circuit were analyzed, and the relationship between magnetic permeability, inductance value, and external magnetic field was established, and the series resonant frequency of the circuit was simulated to calculate the characteristics of the circuit with respect to the inductance variation.Then, two test systems were set up to test the resonance frequency versus magnetic field and the noise characteristics of the sensor.
In impedance mode, the effects of capacitance, drive signal frequency, and static bias magnetic field on the sensor noise floor were first analyzed to determine the optimal parameters of the sensor. When the series capacitance of the sensor is 100pF, the drive signal frequency is 1MHz, and the static bias magnetic field is 7.66Oe, the sensor has the optimal performance with an equivalent noise floor of about $200 p T / \sqrt{H z} @ 1 H z$,an impedance rate of change sensitivity of 160.6%/Oe, and a linear range of about 2Oe.In the frequency mode, the sensor operates linearly up to 25Oe, and using a logistic regression model to fit the resonant frequency to the magnetic field variation, the fit reaches 0.9974, and when the static bias magnetic field is about 7.66Oe, the sensor sensitivity is about 47kHz/Oe.
Not only that, with commercial components costing only ¥10 and excellent performance, the sensor has great market potential compared with other common different kinds of magnetic sensors on the market.-
Keywords:
- Magnetic sensor /
- Bimodal /
- Low noise /
- Wide-range
-
[1] Auster H U, Glassmeier K H, Magnes W, Aydogar O, Baumjohann W, Constantinescu D, Fischer D, Fornacon K H, Georgescu E, Harvey P, Hillenmaier O, Kroth R, Ludlam M, Narita Y, Nakamura R, Okrafka K, Plaschke F, Richter I, Schwarzl H, Stoll B, Valavanoglou A, Wiedemann M 2008 Space Sci. Rev. 141 235
[2] Du A M, Zhang Y, Li H Y, Qiao D H, Yi Z, Zhang T L, Meng L F, Ge Y S, Luo H, Zhao L, Sun S Q, Ou J M, Li Z, Feng X, Dai J L 2020 Space Sci. Rev. 216 135
[3] Fimbombaya H S, Mvungi N H, Hamisi N Y, Iddi H U 2018 Modell. Simul. Eng. 2018 2591304
[4] Kim H-J, Hirayama H, Kim S, Han K J, Zhang R, Choi J-W 2017 IEEE Access 5 21264
[5] Kuwahata A, Tanaka R, Matsuda S, Amada E, Irino T, Mayanagi S, Chikaki S, Saito I, Tanabe N, Kawakubo H, Takeuchi H, Kitagawa Y, Kusakabe M, Sekino M 2020 Sci. Rep. 10 1798
[6] Limes M E, Foley E L, Kornack T W, Caliga S, McBride S, Braun A, Lee W, Lucivero V G, Romalis M V 2020 Phys. Rev. Appl. 14 011002
[7] Liu X Y, Liu C H, Han W, Pong P W T 2019 IEEE Sens. J. 19 1683
[8] Wang S X, Peng D L, Wu Z Y 2019 IEEE Sens. J. 19 9818
[9] Sekino M, Kuwahata A, Ookubo T, Shiozawa M, Ohashi K, Kaneko M, Saito I, Inoue Y, Ohsaki H, Takei H, Kusakabe M 2018 Sci. Rep. 8 1195
[10] Tsukada K, Hayashi M, Nakamura Y, Sakai K, Kiwa T 2018 IEEE Trans. Magn. 54 6202205
[11] Ennen I, Kappe D, Rempel T, Glenske C, Hütten A 2016 Sensors 16 904
[12] Han X F, Zhang Y, Feng J F, Chen C A, Deng H, Huang H, Guo J H, Liang Y, Si W R, Jiang A F, Wei H X 2022 Acta Phys. Sin. 71 238502
[13] Han X F, Zhang Y, Wang Y Z, Huang L, Ma Q L, Liu H F, Wan C H, Feng J F, Yin L, Yu G Q, Yu T, Yan Y 2021 Chin. Phys. Lett. 38 128501
[14] Khan M A, Sun J, Li B D, Przybysz A, Kosel J 2021 Eng. Res. Express 3 022005
[15] Lenz J, Edelstein A S 2006 IEEE Sens. J. 6 631
[16] Narod B B, Miles D M 2024 Geosci. Instrum. Methods Data Syst. 13 131
[17] Wang Z G, Wen T, Su W, Hu C J, Chen Y C, Hu Z Q, Wu J G, Zhou Z Y, Liu M 2021 IEEE Trans. Ind. Electron. 68 7577
[18] Panina L V, Mohri K 1994 Appl. Phys. Lett. 65 1189
[19] Phan M-H, Peng H-X 2008 Prog. Mater Sci. 53 323
[20] Kurlyandskaya G V, Sánchez M L, Hernando B, Prida V M, Gorria P, Tejedor M 2003 Appl. Phys. Lett. 82 3053
[21] Panina L V, Mohri K, Bushida K, Noda M 1994 J. Appl. Phys. 76 6198
[22] Phan M H, Peng H X 2008 Prog. Mater Sci. 53 323
[23] Vazquez M, Knobel M, Sanchez M L, Valenzuela R, Zhukov A P 1997 Sens. Actuator A Phys. 59 20
[24] Butta M, Yamashita S, Sasada I 2011 IEEE Trans. Magn. 47 3748
[25] Malatek M, Dufay B, Saez S, Dolabdjian C 2013 Sens. Actuator A Phys. 204 20
[26] Malátek M, Kraus L 2010 Sens. Actuator A Phys. 164 41
[27] Dufay B, Saez S, Dolabdjian C P, Yelon A, Ménard D 2013 IEEE Sens. J. 13 379
[28] Ding L H, Saez S, Dolabdjian C, Melo L G C, Yelon A, Ménard D 2009 IEEE Sens. J. 9 159
[29] Dufay B, Saez S, Dolabdjian C, Yelon A, Ménard D 2013 IEEE Trans. Magn. 49 85
[30] Dufay B, Saez S, Dolabdjian C P, Yelon A, Ménard D 2011 IEEE Sens. J. 11 1317
[31] Melo L G C, Ménard D, Yelon A, Ding L, Saez S, Dolabdjian C 2008 J. Appl. Phys. 103 033903
[32] Traoré P S, Asfour A, Yonnet J P, Dolabdjian C P 2017 IEEE Sens. J. 17 6175
[33] Traore P S, Asfour A, Yonnet J-P 2021 Sens. Actuator A Phys. 331 112972
[34] Jin F, Wang J C, Zhu L, Mo W Q, Dong K F, Song J L 2019 IEEE Sens. J. 19 9172
[35] Fernández E, García-Arribas A, Barandiarán J M, Svalov A V, Kurlyandskaya G V, Dolabdjian C P 2015 IEEE Sens. J. 15 6707
[36] Kim J Y, Cho I K, Lee H J, Lee J, Moon J I, Kim S M, Kim S W, Ahn S, Kim K 2020 IEEE Access 8 193091
计量
- 文章访问数: 84
- PDF下载量: 3
- 被引次数: 0