搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于巨磁阻抗效应的双模态型低噪声大量程磁传感器

温涛 马宇航 王德全 谌浩然 李艳芳 许洋 王志广

引用本文:
Citation:

基于巨磁阻抗效应的双模态型低噪声大量程磁传感器

温涛, 马宇航, 王德全, 谌浩然, 李艳芳, 许洋, 王志广

Dual-mode low noise large range magnetic sensor based on giant magnetoimpedance effect

WEN Tao, MA Yuhang, WANG Dequan, CHEN Haoran, LI Yanfang, XU Yang, WANG Zhiguang
PDF
HTML
导出引用
  • 磁传感器在导航、交通运输、机器人、自动化、医疗设备等领域有着广泛的应用, 对传感器的性能要求越来越高. 本文提出了一种具有两种工作模式的磁传感器, 兼具大量程和低噪声两种优点. 该传感器由一个640 μH磁芯绕线电感与一个100 pF电容串联构成. 传感器工作于阻抗模式时, 具有噪声低的优点, 当传感器驱动信号频率为1 MHz, 偏置磁场为7.66 Oe (1 Oe = 103/(4π) A/m)时, 传感器等效磁噪声水平最小, 约为200 $ {\text{pT/}}\sqrt {{\text{Hz}}} @1 {\text{Hz}} $, 线性范围为2 Oe; 工作于频率模式时, 具有量程大的优点, 量程可以达到25 Oe, 当偏置磁场为7.66 Oe时, 传感器灵敏度最大, 约为47 kHz/Oe. 该传感器与多种型号的商用磁传感器相比, 其低噪声、大量程、低成本的优点依然具有显著的市场竞争力.
    Magnetic sensors are widely used in the fields of navigation, transportation, robotics, automation, and medical equipment, and the performance requirements of sensors are getting higher and higher. In this work, a bimodal magnetic sensor with two operating modes, which has the advantages of large range and low noise, is proposed. The sensor consists of a 640 μH core-wound inductor in series with a 100 pF capacitor. When the external magnetic field changes, the magnetization state of the iron core in the inductor will change, the inductance value will change accordingly. The resonant frequency and impedance value of the sensor will also change with the magnetic field. In this work, the giant magnetic impedance characteristics of an RLC series circuit are analyzed, and the relationship between magnetic permeability, inductance value, and external magnetic field is established, and the series resonant frequency of the circuit is simulated to calculate the characteristics of the circuit with respect to the inductance variation.Then, two testing systems are set up to test the relationship between resonance frequency and magnetic field, as well as the noise characteristics of the sensor. In the impedance mode, the effects of capacitance, drive signal frequency, and static bias magnetic field on the sensor noise floor are first analyzed to determine the optimal parameters of the sensor. When the series capacitance of the sensor is 100 pF, the drive signal frequency will be 1 MHz and the static bias magnetic field will be 7.66 Oe. The sensor has the optimal performance with an equivalent noise floor of about $ {200}\;{\text{pT/}}\sqrt {{\text{Hz}}} @1 {\text{Hz}} $, an impedance rate of change sensitivity of 160.6%/Oe, and a linear range of about 2 Oe. In the frequency mode, the sensor operates linearly up to 25 Oe. A logistic regression model is used to fit the resonant frequency to the magnetic field variation, and the fitted value reaches 0.9974. When the static bias magnetic field is about 7.66 Oe, the sensor sensitivity will be about 47 kHz/Oe. Moreover, compared with other common types of magnetic sensors on the market, this sensor has the commercial component cost of only ¥10, and excellent performance, and huge market potential.
  • 图 1  电感与电容串联后的等效电路模型

    Fig. 1.  Equivalent circuit model of inductor and capacitor in series.

    图 2  等效电路串联谐振仿真 (a) RLC串联等效电路模型仿真结果; (a) 串联谐振频率随电感的变化

    Fig. 2.  Equivalent circuit series resonance simulation: (a) Simulation results obtained by RLC series equivalent circuit model; (b) variation of series resonance frequency with inductance.

    图 3  电感元件特征 (a) 电感实物图; (b) 电感值随磁场的变化

    Fig. 3.  Inductor characteristic: (a) Physical drawings of inductors; (b) variation of inductance value with magnetic field.

    图 4  谐振频率-磁场传感器测试平台

    Fig. 4.  Resonant frequency-magnetic field sensor test platform.

    图 5  阻抗-磁场传感器测试平台

    Fig. 5.  Impedance-magnetic field sensor test platform.

    图 6  不同条件下的最小等效磁噪声与激励信号频率关系 (a) 电容为91 pF; (b) 电容为100 pF; (c) 电容为110 pF; (d) 电容为120 pF

    Fig. 6.  Relationship between minimum equivalent magnetic noise and frequency of excitation signal under different conditions: (a) The capacitance is 91 pF; (b) the capacitance is 100 pF; (c) the capacitance is 110 pF; (d) the capacitance is 120 pF.

    图 7  GMI传感器特性 (a)不同频率激励信号时GMI传感器的阻抗随磁场的变化; (b) 不同频率激励信号时GMI传感器阻抗变化率随磁场的变化; (c) 不同频率激励信号时GMI传感器阻抗变化率灵敏度随磁场的变化; (d) 在施加3 nT和300 pT的微弱磁信号时GMI传感器的等效磁噪声幅度谱; (e) 传感器阻抗随外加磁场的变化以及线性拟合曲线; (f) 施加1 Hz正弦交流磁信号时传感器的阻抗变化量随磁场强度的变化

    Fig. 7.  GMI sensor characteristics: (a) The impedance of GMI sensor vs. magnetic field for different frequency excitation signals; (b) the impedance variation of GMI sensor vs. magnetic field for different frequency excitation signals; (c) impedance change rate sensitivity of GMI sensor vs. magnetic field for different frequency excitation signals; (d) the equivalent magnetic noise amplitude spectrum of the GMI sensor when a weak magnetic signal of 3 nT or 300 pT is applied; (e) sensor impedance vs. applied magnetic field and corresponding linear fitting curve; (f) sensor impedance variation vs. magnetic field intensity when 1 Hz sinusoidal AC magnetic signal is applied.

    图 8  磁传感器谐振频率随磁场强度的变化及拟合曲线

    Fig. 8.  Resonance frequency of magnetic sensor vs. magnetic field intensity curve and corresponding fitting curve.

    图 9  谐振频率-磁场数值拟合曲线及灵敏度曲线

    Fig. 9.  Resonance frequency vs. magnetic field fitting curve and sensitivity curve.

    表 1  最小等效磁噪声及其对应参数

    Table 1.  Minimum equivalent magnetic noise and its corresponding parameters.

    电容值/pF最小等效磁
    噪声/nT
    激励信号
    频率/MHz
    偏置磁场/Oe
    910.550.87.66
    1000.4917.66
    1100.7515.9
    1200.5917.66
    下载: 导出CSV

    表 2  双模态磁传感器与商用磁传感器对比

    Table 2.  Comparison of dual-mode magnetic sensor and commercial magnetic sensor.

    类型型号厂家本底噪声/
    (nT@1 Hz)
    量程/
    ±Oe
    灵敏度截止频率价格
    AMRMMC5983 MA美新半导体4081 kHz~34
    AMRHMC1001霍尼韦尔0.553.2 mV/(V·Oe)5 MHz~100
    GMRAA002NVE21536 mV/(V·Oe)1 MHz~150
    TMRTMR2901多维2825 mV/(V·Oe)~350
    TMRTLI5590 - A6 W英飞凌501.85 mV/(V·Oe)5 kHz~20
    TMRCT815 XAllegro805 mV/(V·Oe)100 Hz~10
    MicrofluxgateDRV425德州仪器4201.22 mA/Oe32 kHz~30
    FluxgateMag651Bartington~0.020.65 V/Oe5 Hz>35000
    HallDRV5055
    A1/Z1
    德州仪器13021010 mV/Oe20 kHz~10
    GMIMI-CB-1 DJAichi~0.10.02500 V/Oe10 kHz~10000
    GMIGC-CC-101 A国创智能~0.060.62 kHz~5000
    LC串联磁传感器阻抗模式~0.26—8 Oe160.6%/Oe~10
    频率模式5—30 Oe47 kHz/Oe(max)~10
    下载: 导出CSV
  • [1]

    Auster H U, Glassmeier K H, Magnes W, Aydogar O, Baumjohann W, Constantinescu D, Fischer D, Fornacon K H, Georgescu E, Harvey P, Hillenmaier O, Kroth R, Ludlam M, Narita Y, Nakamura R, Okrafka K, Plaschke F, Richter I, Schwarzl H, Stoll B, Valavanoglou A, Wiedemann M 2008 Space Sci. Rev. 141 235Google Scholar

    [2]

    Du A M, Zhang Y, Li H Y, Qiao D H, Yi Z, Zhang T L, Meng L F, Ge Y S, Luo H, Zhao L, Sun S Q, Ou J M, Li Z, Feng X, Dai J L 2020 Space Sci. Rev. 216 135Google Scholar

    [3]

    Fimbombaya H S, Mvungi N H, Hamisi N Y, Iddi H U 2018 Modell. Simul. Eng. 2018 2591304

    [4]

    Kim H J, Hirayama H, Kim S, Han K J, Zhang R, Choi J W 2017 IEEE Access 5 21264Google Scholar

    [5]

    Kuwahata A, Tanaka R, Matsuda S, Amada E, Irino T, Mayanagi S, Chikaki S, Saito I, Tanabe N, Kawakubo H, Takeuchi H, Kitagawa Y, Kusakabe M, Sekino M 2020 Sci. Rep. 10 1798Google Scholar

    [6]

    Limes M E, Foley E L, Kornack T W, Caliga S, McBride S, Braun A, Lee W, Lucivero V G, Romalis M V 2020 Phys. Rev. Appl. 14 011002Google Scholar

    [7]

    Liu X Y, Liu C H, Han W, Pong P W T 2019 IEEE Sens. J. 19 1683Google Scholar

    [8]

    Wang S X, Peng D L, Wu Z Y 2019 IEEE Sens. J. 19 9818Google Scholar

    [9]

    Sekino M, Kuwahata A, Ookubo T, Shiozawa M, Ohashi K, Kaneko M, Saito I, Inoue Y, Ohsaki H, Takei H, Kusakabe M 2018 Sci. Rep. 8 1195Google Scholar

    [10]

    Tsukada K, Hayashi M, Nakamura Y, Sakai K, Kiwa T 2018 IEEE Trans. Magn. 54 6202205

    [11]

    Ennen I, Kappe D, Rempel T, Glenske C, Hütten A 2016 Sensors 16 904Google Scholar

    [12]

    韩秀峰, 张雨, 丰家峰, 陈川, 邓辉, 黄辉, 郭经红, 梁云, 司文荣, 江安烽, 魏红祥 2022 物理学报 71 238502Google Scholar

    Han X F, Zhang Y, Feng J F, Chen C A, Deng H, Huang H, Guo J H, Liang Y, Si W R, Jiang A F, Wei H X 2022 Acta Phys. Sin. 71 238502Google Scholar

    [13]

    Han X F, Zhang Y, Wang Y Z, Huang L, Ma Q L, Liu H F, Wan C H, Feng J F, Yin L, Yu G Q, Yu T, Yan Y 2021 Chin. Phys. Lett. 38 128501Google Scholar

    [14]

    Khan M A, Sun J, Li B D, Przybysz A, Kosel J 2021 Eng. Res. Express 3 022005Google Scholar

    [15]

    Lenz J, Edelstein A S 2006 IEEE Sens. J. 6 631Google Scholar

    [16]

    Narod B B, Miles D M 2024 Geosci. Instrum. Methods Data Syst. 13 131Google Scholar

    [17]

    Wang Z G, Wen T, Su W, Hu C J, Chen Y C, Hu Z Q, Wu J G, Zhou Z Y, Liu M 2021 IEEE Trans. Ind. Electron. 68 7577Google Scholar

    [18]

    Panina L V, Mohri K 1994 Appl. Phys. Lett. 65 1189Google Scholar

    [19]

    Phan M H, Peng H X 2008 Prog. Mater Sci. 53 323Google Scholar

    [20]

    Kurlyandskaya G V, Sánchez M L, Hernando B, Prida V M, Gorria P, Tejedor M 2003 Appl. Phys. Lett. 82 3053Google Scholar

    [21]

    Panina L V, Mohri K, Bushida K, Noda M 1994 J. Appl. Phys. 76 6198Google Scholar

    [22]

    Phan M H, Peng H X 2008 Prog. Mater Sci. 53 323Google Scholar

    [23]

    Vazquez M, Knobel M, Sanchez M L, Valenzuela R, Zhukov A P 1997 Sens. Actuator A Phys. 59 20Google Scholar

    [24]

    Butta M, Yamashita S, Sasada I 2011 IEEE Trans. Magn. 47 3748Google Scholar

    [25]

    Malatek M, Dufay B, Saez S, Dolabdjian C 2013 Sens. Actuator A Phys. 204 20Google Scholar

    [26]

    Malátek M, Kraus L 2010 Sens. Actuator A Phys. 164 41Google Scholar

    [27]

    Dufay B, Saez S, Dolabdjian C P, Yelon A, Ménard D 2013 IEEE Sens. J. 13 379Google Scholar

    [28]

    Ding L H, Saez S, Dolabdjian C, Melo L G C, Yelon A, Ménard D 2009 IEEE Sens. J. 9 159Google Scholar

    [29]

    Dufay B, Saez S, Dolabdjian C, Yelon A, Ménard D 2013 IEEE Trans. Magn. 49 85Google Scholar

    [30]

    Dufay B, Saez S, Dolabdjian C P, Yelon A, Ménard D 2011 IEEE Sens. J. 11 1317Google Scholar

    [31]

    Melo L G C, Ménard D, Yelon A, Ding L, Saez S, Dolabdjian C 2008 J. Appl. Phys. 103 033903Google Scholar

    [32]

    Traoré P S, Asfour A, Yonnet J P, Dolabdjian C P 2017 IEEE Sens. J. 17 6175Google Scholar

    [33]

    Traore P S, Asfour A, Yonnet J P 2021 Sens. Actuator A Phys. 331 112972Google Scholar

    [34]

    Jin F, Wang J C, Zhu L, Mo W Q, Dong K F, Song J L 2019 IEEE Sens. J. 19 9172Google Scholar

    [35]

    Fernández E, García-Arribas A, Barandiarán J M, Svalov A V, Kurlyandskaya G V, Dolabdjian C P 2015 IEEE Sens. J. 15 6707Google Scholar

    [36]

    Kim J Y, Cho I K, Lee H J, Lee J, Moon J I, Kim S M, Kim S W, Ahn S, Kim K 2020 IEEE Access 8 193091Google Scholar

  • [1] 李响, 王嘉伟, 李番, 黄天时, 党昊, 赵得胜, 田龙, 史少平, 李卫, 尹王保, 郑耀辉. 面向地基引力波探测频段的超低噪声激光强度噪声评估系统. 物理学报, doi: 10.7498/aps.74.20241319
    [2] 尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉. 0.1 mHz-1 Hz频段超低噪声光电探测器实验研究. 物理学报, doi: 10.7498/aps.74.20241635
    [3] 武列列, 任益充, 薛飞. 基于铁磁扭摆振子的磁场测量及其应用. 物理学报, doi: 10.7498/aps.74.20241538
    [4] 唐海涛, 米壮, 王文宇, 唐向前, 叶霞, 单欣岩, 陆兴华. 用于扫描隧道显微镜的低噪声前置电流放大器. 物理学报, doi: 10.7498/aps.73.20240560
    [5] 王嘉伟, 李健博, 李番, 郑立昂, 高子超, 安炳南, 马正磊, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的程控低噪声高精度电压基准源. 物理学报, doi: 10.7498/aps.72.20222119
    [6] 曹若琳, 彭清轩, 王金东, 陈勇杰, 黄云飞, 於亚飞, 魏正军, 张智明. 基于单光子计数反馈的低噪声光纤信道波分复用实时偏振补偿系统. 物理学报, doi: 10.7498/aps.71.20220120
    [7] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法. 物理学报, doi: 10.7498/aps.71.20211253
    [8] 王凯, 林百科, 宋有建, 孟飞, 林弋戈, 曹士英, 胡明列, 方占军. 基于光学-微波同步的低噪声微波产生方法. 物理学报, doi: 10.7498/aps.70.20211253
    [9] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, doi: 10.7498/aps.70.20201925
    [10] 刘磊, 徐志博, 钱文硕, 李文杰, 谢芳, 钟志, 单明广. 双合成波长数字全息低噪声分级解包裹方法. 物理学报, doi: 10.7498/aps.70.20210669
    [11] 韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇. 低噪声超导量子干涉器件磁强计设计与制备. 物理学报, doi: 10.7498/aps.68.20190483
    [12] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术. 物理学报, doi: 10.7498/aps.68.20190238
    [13] 关佳, 顾翊晟, 朱成杰, 羊亚平. 利用相干制备的三能级原子介质实现低噪声弱光相位操控. 物理学报, doi: 10.7498/aps.66.024205
    [14] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, doi: 10.7498/aps.65.057501
    [15] 杨波, 卜雄洙, 王新征, 于靖. 高斯噪声和弱正弦信号驱动的时间差型磁通门传感器. 物理学报, doi: 10.7498/aps.63.200702
    [16] 于振涛, 吕俊伟, 毕波, 周静. 四面体磁梯度张量系统的载体磁干扰补偿方法. 物理学报, doi: 10.7498/aps.63.110702
    [17] 王文波, 汪祥莉. 噪声模态单元预判的经验模态分解脉冲星信号消噪. 物理学报, doi: 10.7498/aps.62.209701
    [18] 刘明, 徐小峰, 王永良, 曾佳, 李华, 邱阳, 张树林, 张国峰, 孔祥燕, 谢晓明. 超导量子干涉器件读出电路中匹配变压器的传输特性研究. 物理学报, doi: 10.7498/aps.62.188501
    [19] 吴少兵, 陈实, 李海, 杨晓非. TMR与GMR传感器1/f噪声的研究进展. 物理学报, doi: 10.7498/aps.61.097504
    [20] 王金东, 路 巍, 赵 峰, 刘小宝, 郭邦红, 张 静, 黄宇娴, 路轶群, 刘颂豪. 稳定的低噪声自由空间量子密钥分配实验研究. 物理学报, doi: 10.7498/aps.57.4214
计量
  • 文章访问数:  252
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-25
  • 修回日期:  2024-12-05
  • 上网日期:  2024-12-11

/

返回文章
返回