-
平衡光电探测器作为一种检测量子态噪声起伏通用技术的核心关键器件,其性能参数在近直流的宽频带范围内(mHz-MHz)常受限于电子学噪声与电学增益的相互制约。针对1 mHz-1 Hz极低频段,为满足未来量子增强引力波探测计划中对量子压缩光源探测和评估等方面的需求,本研究基于一种可调节阻抗匹配网络与两级差分放大的设计架构,使用差分微调电路(DFTC)与可调偏置电压(ABV)协同补偿方案,优化光电二极管(PD)的非线性响应补偿机制,在分析频段500 Hz处实现共模抑制比(CMRR)>75 dB。实验结果表明,在小于1 Hz的频段内,探测器的电子学噪声优于3.5×10-5 V/Hz1/2,满足空间引力波探测计划对于激光强度噪声的要求(1×10-4 V/Hz1/2);同时当入射的本底探测光功率为4 mW时,本平衡光电探测器可实现增益20 dB@1 mHz-1 MHz,满足高指标压缩光源的高效探测需求,为下一代空间引力波探测以及极低频段压缩态光场的探测提供了关键器件的解决方案。Balanced detectors are fundamental components for the precise measurement of quantum state fluctuations, particularly quantum noise, which is crucial for future quantum-enhanced interferometric gravitational wave detectors utilizing squeezed light. Based on the transimpedance amplifier (TIA) model core to balanced detection, we conduct a detailed theoretical and practical analysis of the electronic factors influencing detector performance in the target ultra-lowfrequency band. The TIA stage was meticulously designed using a highperformance integrated operational amplifier characterized by low offset voltage drift. To ensure gain stability critical for ultra-low-frequency operation, the design incorporated low temperature-drift metal foil resistors. Subsequent voltage amplification was achieved using a noninverting amplifier configuration to attain the necessary high electrical gain while strictly managing overall electronic noise. Recognizing the criticality of common-mode noise rejection for quantum noise measurements, we analyzed and optimized the photodiode (PD) nonlinear response compensation mechanism. This was achieved through the innovative implementation of a differential fine-tuning circuit (DFTC) coupled with an adjustable bias voltage (ABV) compensation scheme. Experimental validation confirmed the effectiveness of the optimized design. The compensation scheme utilizing DFTC and ABV successfully achieved a high common mode rejection ratio (CMRR) exceeding 75 dB@500 Hz. Crucially, the detector achieves an electronic noise spectral density of 3.5×10-5 V/Hz1/2 within the 1 mHz–1 Hz band, surpassing the space-based gravitational wave detection requirement for laser intensity noise (1×10-4 V/Hz1/2). Furthermore, the detector demonstrated high gain capability and bandwidth: with an incident detection light power of 4 mW, the balanced detectors achieved a gain of 20 dB maintained across a wide frequency range from 1 mHz to 1 MHz. This work presents the design, detailed analysis, and experimental realization of optimized balanced detectors specifically tailored for high-sensitivity measurements in the millihertz gravitational wave frequency band. The achieved low electronic noise floor below 1 Hz and high CMRR fulfill the critical requirements for detecting squeezed states of light in future space-based gravitational wave detectors. This optimized balanced detector provides vital components and technical support for next-generation space-based gravitational wave detection and millihertz squeezed light characterization.
-
Keywords:
- millihertz band /
- balanced photoelectric detection /
- transimpedance Amplifier /
- common mode rejection ratio
-
[1] Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R X, Adya V B, Affeldt C 2020 Phys. Rev. Lett. 125 101102
[2] Vitale S 2021 Science 372 eabc7397
[3] Abbott T D, Abraham S, Acernese F, et al. 2020 Astrophys. J. Lett. 896 L44
[4] Li Q H, Li W, Sun Y, Wang Y J, Tian L, Chen L R, Zhang P F, Zheng Y H 2022 Acta Phys. Sin. 71 164203(in Chinese) [李庆回, 李卫, 孙瑜, 王雅君, 田龙, 陈力荣, 张鹏飞, 郑耀辉 2022 物理学报 71 164203]
[5] Wang Z Y, Wang J H, Li Y H, Liu Q 2023 Acta Phys. Sin. 72 054205 (in Chinese) [王在渊, 王洁浩, 李宇航, 柳强 2023 物理学报 72 054205]
[6] Jia W X, Xu V, Kuns K, et al. 2024 Science 385 1318
[7] McCuller L, Whittle C, Ganapathy D, Komori K, Tse K, Fernandez-Galiana A, Barsotti L, Fritschel P, MacInnis M, Matichard F, Mason K, Mavalvala N, Mittleman R, Yu H C, Zucker M E, Evans M 2020 Phys. Rev. Lett. 124 171102
[8] Aasi J, Abadie J, Abbott B P, Abbott R, et al. 2013 Nat. Photonics 7 613
[9] Acernese F, Agathos M, Aiello L, et al. 2019 Phys. Rev. Lett. 123 231108
[10] Mikhail K, Ma Y Q, Chen Y B, Schnabel R 2019 Light: Sci. Appl. 8 118
[11] Harry G M, LIGO Scientific Collaboration 2010 Class. Quantum Grav. 27 084006
[12] Matichard F, Lantz B, Mittleman R, et al. 2015 Class. Quantum Grav. 32 185003
[13] Thorne K S, Winstein C J 1999 Phys. Rev. D 60 082001
[14] Acernese F, Agathos M, Agatsuma K, et al. 2014 Class. Quantum Grav. 32 024001
[15] Luo J, Chen L S, Duan H Z, Gong Y G, Hu S C, Ji J H, Liu Q, Mei J W, Milyukov V, Sazhin M, Shao C G, Toth V T, Tu H B, Wang Y M, Wang Y, Yeh H C, Zhan M S, Zhang Y H, Zharov V, Zhou Z B 2016 Class. Quantum Grav. 33 035010
[16] Jennrich O 2009 Class. Quantum Grav. 26 153001
[17] Luo Z R, Wang Y, Wu Y L, Hu W R, Jin G 2021 Prog. Theor. Exp. Phys. 2021 05A108
[18] Luo Z R, Guo Z K, Jin G, Wu Y L, Hu W R 2020 Results Phys.16 102918.
[19] Luo Z R, Bai S B, Chen G R, Dong P, Dong Y H, Gao W, Gong X F, He J W, Li H Y, Li X Q, Li Y Q, Liu H S, Shao M X, Song T X, Sun B S, Tang W L, Xu P, Xu S N, Yang R, Jin G 2013 Adv. Mechan. 43 415 (in Chinese) [罗子人, 白姗边, 陈葛瑞, 董鹏, 董玉辉, 高伟, 龚雪飞, 贺建武, 李洪银, 李向前, 李玉琼, 刘河山, 邵明学, 宋同消, 孙保三, 唐文林, 徐鹏, 徐生年, 杨然, 靳刚 2013力学进展 43 415]
[20] Badaracco F, Rossi C D, Fiori I, Harms J, Miyo K, Paoletti F, Tanaka T, Washimi T, Yokozawa T 2021 Phys. Rev. D 104 042006
[21] Stefszky M S, Mow-Lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Class. Quantum Grav. 29 145015
[22] Shang X, LI F, Ma Z L, Huang T S, Dang H, LI W, Yin W B, Tian L, Cheng L R, Zheng Y H 2025 Acta Phys. Sin. 74 059501(in Chinese) [尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉2025 物理学报 74 059501]
[23] McKenzie K, Gray M B, Lam P K, McClelland D E 2007 Appl. Opt. 46 3389
[24] Schnabel R, Mavalvala N, McClelland D E, Lam P K 2010 Nat. Commun. 1 122
[25] Vahlbruch H, Chelkowski S, Danzmann K, Schnabel R 2007 New J. Phys. 9 371
[26] Wu M C, Schmittberger B L, Brewer N R, Speirs R W, Jones K M, Lett P D 2019 Opt. Express 27 4769
[27] Meylahn F, Willke B, Vahlbruch H 2022 Phys. Rev. Lett. 129 121103
[28] Gao L, Zheng L A., Lu B, Shi S P, Tian L, Zheng Y H 2024 Light: Sci. Appl. 13 294
[29] Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262
[30] Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Yin W B, Tian L, Zheng Y H 2022 Infrared Laser Eng. 51 20220300 (in Chinese) [王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 尹王保, 田龙, 郑耀辉 2022 红外与激光工程 51 20220300]
[31] Wu Y M, Tian L, Yao W X, Shi S P, Liu X, Lu B, Wang Y J, Zheng Y H 2024 Appl. Phys. Lett. 124 114002
[32] Shi S P, Tian L, Wang Y J, Zheng Y H, Xie C D, Peng K C 2020 Phys. Rev. Lett. 125 070502
[33] Shi S P, Wu Y M, Liu X, Tian L, Zheng Y H 2024 Quantum Opt. 30 040102 (in Chinese) [史少平, 武奕淼, 刘璇, 田龙, 郑耀辉 2024 量子光学学报 30 040102]
[34] Wang D K, Wu J Z, Song Z G, Li J H 2024 Quantum Opt. 30 041001 (in Chinese) [王鼎康, 武晋泽, 宋志刚, 李晋红 2024量子光学学报, 30 041001]
[35] Graeme J 1996 Photodiode amplifiers: op amp solutions (New York: McGraw-Hill) pp87-92
[36] AD797: Ultralow Distortion, Ultralow Noise Op Amp Data Sheet (Rev.K) https://www.analog.com/media/en/technical-documentation/data-sheets/AD797.pdf [2025-5-12]
[37] AD8671/AD8672/AD8674: Precision, Very Low Noise, Low Input Bias Current Operational Amplifiers Data Sheet (Rev.F) https://www.analog.com/media/en/technical-documentation/data-sheets/AD8671_8672_8674.pdf [2025-5-12]
[38] Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 23859
[39] Lu Q, Shen Q, Cao Y, Liao S K, Peng C Z 2018 IEEE Trans. Nucl. Sci. 66 1048
[40] Li F, Wang J W, Gao Z C, Li J B, An B N, Li R X, Bai Y, Yin W B, Tian L, Zheng Y H 2022 Acta Phys. Sin. 71 209501 (in Chinese) [李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹,尹王保, 田龙, 郑耀辉 2022 物理学报71 209501]
计量
- 文章访问数: 34
- PDF下载量: 3
- 被引次数: 0