搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0.1 mHz-1 Hz频段超低噪声光电探测器实验研究

尚鑫 李番 马正磊 黄天时 党昊 李卫 尹王保 田龙 陈力荣 郑耀辉

引用本文:
Citation:

0.1 mHz-1 Hz频段超低噪声光电探测器实验研究

尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉

Low noise photodetector in 0.1 mHz-1 Hz band

Shang Xin, Li Fan, Ma Zheng-Lei, Huang Tian-Shi, Dang Hao, Li Wei, Yin Wang-Bao, Tian Long, Chen Li-Rong, Zheng Yao-Hui
PDF
导出引用
  • 本文针对空间引力波探测中抑制0.1 mHz-1 Hz频段激光强度噪声需求,基于光电二极管在光伏模式下具有低暗电流的特点,采用零偏置电压方案,结合零失调电压漂移的集成运放及低温漂金属箔电阻组成跨阻放大电路,优化跨阻电容以及跟随电路;并进一步通过主动温控对光电二极管控温来稳定光电二极管响应度,研发出在0.1 mHz-1 Hz频段内超低电子学噪声的光电探测器。利用自研的强度噪声评估系统对其噪声进行时域及频域全面评估测试,实验结果表明:所研发探测器的电子学噪声谱密度达到2×10-6 V/Hz1/2@0.1 mHz-1 Hz,探测器增益能够达到35 kV/W@1064 nm。该探测器噪声性能小于空间引力波探测中对激光强度噪声(10-4/Hz1/2)要求两个数量级,为高增益光电反馈控制以及空间引力波探测中激光强度噪声抑制等方面提供关键器件及技术支撑。
    Laser intensity noise suppression in the millihertz frequency band is essential for space-based gravitational wave detection to ensure the sensitivity of the interferometer. Photonic feedback technology is one of the most effective methods for suppressing laser intensity noise. As the first-stage component in the feedback loop, the noise of the photodetector directly couples into the feedback loop, significantly impacting the laser intensity noise. Starting from the requirement to suppress laser intensity noise in the 0.1 mHz-1 Hz frequency band for space-based gravitational wave detection, this paper provides a detailed analysis of the factors influencing the electronics of photodetectors at extremely low frequencies. Leveraging the low dark current characteristic of photodiodes in photovoltaic mode, a zero-bias voltage scheme is adopted to reduce the dark noise of the photodiode. A transimpedance amplification circuit is designed using an integrated operational amplifier with zero offset voltage drift and low-temperature drift metal foil resistors, optimizing the transimpedance capacitor and follower circuit to reduce 1/f noise in the circuit. Active temperature control is employed to stabilize the photodiode's responsivity, and additional measures such as using a self-developed low-noise power supply and shielding against interference are implemented to further reduce noise. Ultimately, an ultra-low electronic noise photodetector operating in the 0.1 mHz-1 Hz frequency band is developed. A self-developed intensity noise evaluation system is used to comprehensively assess the noise in both the time and frequency domains, and experimental results demonstrate the constant noise characteristics of the developed detector. The experimental results show that the electronic noise spectral density of the developed detector reaches 2×10-6V/Hz1/2 in the 0.1 mHz-1 Hz frequency band, and the detector's electronic noise does not vary with optical power. The detector achieves a gain of 35 kV/W at 1064 nm. The noise performance of the detector is two orders of magnitude lower than the laser intensity noise requirement (10-4/Hz1/2) for space-based gravitational wave detection, providing a critical component and technical support for high-gain photonic feedback control and laser intensity noise suppression in space-based gravitational wave detection.
  • [1]

    Abbott B P, Abbott R, Abbott T D, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B 2016Phys. Rev. Lett. 116 061102

    [2]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R X, Adya V B, Affeldt C, Agathos M 2020Astrophys. J. Lett. 896 L44

    [3]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R X, Adya V B, Affeldt C 2020Phys. Rev. Lett. 125 101102

    [4]

    Sathyaprakash B S, Schutz B F 2009Living Rev. Relativ. 12 2

    [5]

    Jennrich O 2009Class. Quantum Grav. 26 153001

    [6]

    Wang Z Y, Wang J H, Li Z H, Luo Z R, Chen X, Zhao Q, Wu Y P, Zheng Y H 2023Acta Phys. Sin. 72 054205(in Chinese) [王在渊, 王洁浩, 李字航, 罗子人, 陈欣, 赵琴, 武延鹏, 郑耀辉2023物理学报72054205]

    [7]

    Badaracco F, Harms J, De Rossi C, Martynov D, Swinkels B L, Shoda A, van Heijningen J, Staley A, Matone L, Boschi V, Ohashi M, Hild S, Naticchioni L 2021Phys. Rev. D 104 042006

    [8]

    Li W, Xie C B, Li Q H, Sun Y, Zhang Y B, Wu Y P, Wang Y J, Zheng Y H 2023Quantum Opt. 29 24(in Chinese) [李卫, 谢超帮, 李庆回, 孙瑜, 张亚斌, 武延鹏, 王雅君, 郑耀辉2023量子光学学报2924]

    [9]

    Li Q H, Li W, Sun Y, Zhang Y B, Wu Y P, Wang Y J, Zheng Y H 2022 Acta Phys. Sin. 71 164203(in Chinese) [李庆回, 李卫, 孙瑜, 张亚斌, 武延鹏, 王雅君, 郑耀辉2022物理学报71164203]

    [10]

    Kwee P, Willke B, Danzmann K 2009Opt. Lett. 34 2912

    [11]

    Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2025Quantum Opt. 31 040201(in Chinese) [刘骏杨, 韩逸凡, 陈力荣, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉2025量子光学学报31040201]

    [12]

    Vahlbruch H, Wilken D, Mechmet M, Willke B 2018Phys. Rev. Lett. 121173601

    [13]

    Gao L, Zheng L, Lu B, Shi S, Tian L, Zheng Y 2024Light Sci. Appl. 13 294

    [14]

    Luo Z, Wang Y, Wu Y, Mei J, Zhong Y, Hu Y, Yang S, Chen P, Chen X, Chen Y 2021Prog. Theor. Exp. Phys. 2021 05A108

    [15]

    Luo J, Chen L S, Duan H Z 2016Class. Quantum Grav. 33 035010

    [16]

    Buchler B C, Huntington E H, Harb C C 1998Phys. Rev. A 57 1286

    [17]

    Tröbs M 2005Ph.D. Dissertation (Hannover: Leibniz University Hannover)

    [18]

    Zhang J 2020Ph.D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [张骥2020博士学位论文(合肥: 中国科学技术大学)]

    [19]

    Li Y Q, Wang L Y, Wang C Y 2019Opt. Precis. Eng. 27 1710(in Chinese) [李玉琼, 王璐钰, 王晨昱2019光学精密工程271710]

    [20]

    Wang W J, Li F, Li J B 2022Infrared Laser Eng. 51 20220300(in Chinese) [王炜杰, 李番, 李健博2022红外与激光工程5120220300]

    [21]

    Zheng L A, Li F, Wang J W 2023Acta Photonica Sin. 52 282(in Chinese) [郑立昂, 李番, 王嘉伟2023光子学报52282]

    [22]

    Understanding and Eliminating 1/f Noise, Robert K https://www.analog.com/en/resources/analog-dialogue/articles/2017/04/21/10/42/understanding-and-eliminating-1-f-noise.html [2024-12-10]

    [23]

    Measuring 2nV/√Hz Noise and 120 dB Supply Rejection on Linear Regulators, Todd O, Amit P https://www.analog.com/cn/resources/app-notes/an-159.html [2024-12-10]

    [24]

    Sallusti M, Gath P, Weise D, Rivas M, Vitelli M 2009 Class. Quantum Grav. 26 094015

    [25]

    Cutler C, Thorne K S 2002 General Relativity and Gravitation (Singapore: World Scientific) pp72-111

    [26]

    Hayashida T, Nanjo T, Furukawa A, Yamamuka M 2017Appl. Phys. Express 10061003

    [27]

    Li W, Nomoto K, Pilla M, Pan M, Gao X, Jena D, Xing H G 2017IEEE Trans. Electron Devices 64 1635

    [28]

    Singh R, Cooper J A, Melloch M R, Chow T P, Palmour J W 2002 IEEE Trans. Electron Devices 49 665

    [29]

    Zhou H, Yang W, Li Z, Li X, Zheng Y 2014 Rev. Sci. Instrum. 85 013111

    [30]

    Using MCP6491 Op Amps for Photodetection Applications, Yang Zhen https://ww1.microchip.com/downloads/en/Appnotes/01494A.pdf [2024-12-10]

    [31]

    Graeme J G 1996Photodiode Amplifiers: Op Amp Solutions 1st ed (New York: McGraw-Hill) pp 21-23

    [32]

    Chilingarian A 1995Pattern Recognit. Lett. 16 335

    [33]

    Chen X, Luo M, Hu R Z, Zhang R J, Yao P F, Xu J J 2019J. Manuf. Process. 41 111

    [34]

    Williams J 2001Electrical Design News: The Magazine of the Electronics Industry 46(10) 83-84, 86

    [35]

    Li F, Wang J W, Gao Z C, Li L, Wu Y P, Wang Y J, Zheng Y H 2022Acta Phys. Sin. 71 377(in Chinese) [李番, 王嘉伟, 高子超, 李林, 武延鹏, 王雅君, 郑耀辉2022物理学报71377]

  • [1] 李响, 王嘉伟, 李番, 黄天时, 党昊, 赵得胜, 田龙, 史少平, 李卫, 尹王保, 郑耀辉. 面向地基引力波探测频段的超低噪声激光强度噪声评估系统. 物理学报, doi: 10.7498/aps.74.20241319
    [2] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, doi: 10.7498/aps.73.20231919
    [3] 程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强. 具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器. 物理学报, doi: 10.7498/aps.73.20241075
    [4] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, doi: 10.7498/aps.73.20240267
    [5] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, doi: 10.7498/aps.73.20231645
    [6] 乐陶然, 穆衡霖, 徐欣, 谈宜东, 尉昊赟, 李岩. 用于星间激光干涉测量的分频相位计辅助弱光锁相. 物理学报, doi: 10.7498/aps.72.20221941
    [7] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, doi: 10.7498/aps.72.20222021
    [8] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, doi: 10.7498/aps.72.20222303
    [9] 王嘉伟, 李健博, 李番, 郑立昂, 高子超, 安炳南, 马正磊, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的程控低噪声高精度电压基准源. 物理学报, doi: 10.7498/aps.72.20222119
    [10] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器. 物理学报, doi: 10.7498/aps.72.20222127
    [11] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, doi: 10.7498/aps.71.20220388
    [12] 胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞. 双配体策略制备大气环境下性能稳定的CsPbIBr2光电探测器. 物理学报, doi: 10.7498/aps.71.20212143
    [13] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的激光强度噪声评估系统. 物理学报, doi: 10.7498/aps.71.20220841
    [14] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, doi: 10.7498/aps.70.20210859
    [15] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, doi: 10.7498/aps.70.20210138
    [16] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.69.20191960
    [17] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, doi: 10.7498/aps.67.20180502
    [18] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.67.20180129
    [19] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, doi: 10.7498/aps.66.198502
    [20] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, doi: 10.7498/aps.59.4524
计量
  • 文章访问数:  114
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-08

/

返回文章
返回