搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

0.1 mHz—1 Hz频段超低噪声光电探测器实验研究

尚鑫 李番 马正磊 黄天时 党昊 李卫 尹王保 田龙 陈力荣 郑耀辉

引用本文:
Citation:

0.1 mHz—1 Hz频段超低噪声光电探测器实验研究

尚鑫, 李番, 马正磊, 黄天时, 党昊, 李卫, 尹王保, 田龙, 陈力荣, 郑耀辉

Experimental study of ultra-low noise photodetectors in 0.1 mHz—1 Hz frequency band

SHANG Xin, LI Fan, MA Zhenglei, HUANG Tianshi, DANG Hao, LI Wei, YIN Wangbao, TIAN Long, CHEN Lirong, ZHENG Yaohui
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 针对空间引力波探测中抑制0.1 mHz—1 Hz频段激光强度噪声需求, 基于光电二极管在光伏模式下具有低暗电流的特点, 采用零偏置电压方案, 结合零失调电压漂移的集成运放及低温漂金属箔电阻组成跨阻放大电路, 优化跨阻电容以及跟随电路; 并进一步通过主动温控对光电二极管控温来稳定光电二极管响应度, 研发出在0.1 mHz—1 Hz频段内超低电子学噪声的光电探测器. 利用自研的强度噪声评估系统对其噪声进行时域及频域全面评估测试, 实验结果表明: 所研发探测器的电子学噪声谱密度达到2×10–6 V/Hz1/2@0.1 mHz—1 Hz, 探测器增益能够达到 35 kV/W @1064 nm. 该探测器噪声性能小于空间引力波探测中对激光强度噪声(10–4 Hz–1/2)要求两个数量级, 为高增益光电反馈控制以及空间引力波探测中激光强度噪声抑制等方面提供关键器件及技术支撑.
    Laser intensity noise suppression in the millihertz frequency band is essential for space-based gravitational wave detection to ensure the sensitivity of the interferometer. Optoelectronic feedback technology is one of the most effective methods of suppressing laser intensity noise. , The noise of the photodetector that is the first-stage component in the feedback loop, directly couples into the feedback loop, thus significantly affecting the laser intensity noise. In this paper, starting from the requirement of suppressing laser intensity noise in the 0.1 mHz–1 Hz frequency band for space-based gravitational wave detection, the factors affecting the electronics of photodetectors at extremely low frequencies are analyzed in detail. Using the low dark current characteristic of photodiodes in photovoltaic mode, a zero-bias voltage scheme is adopted to reduce the dark noise of the photodiode. A transimpedance amplification circuit is designed using an integrated operational amplifier with zero offset voltage drift and low-temperature drift metal foil resistors, thereby optimizing the transimpedance capacitor and follower circuit to reduce 1/f noise in the circuit. Active temperature control is employed to stabilize the responsivity of photodiode, and additional measures such as using a homemade low-noise power supply and shielding interference are taken to further reduce the noise. Ultimately, an ultra-low electronic noise photodetector operating in the 0.1 mHz–1 Hz frequency band is developed. A homemade intensity noise evaluation system is used to comprehensively assess the noise both in the time domain and in the frequency domain. The constant noise characteristics of the homemade detector are estimated experimentally. The experimental results show that the electronic noise spectral density of the homemade detector reaches 2×10–6 V/Hz1/2 in the 0.1 mHz–1 Hz frequency band, and the electronic noise of the detector does not vary with optical power. The detector achieves a gain of 35 kV/W at 1064 nm. The noise performance of the detector is two orders of magnitude lower than the laser intensity noise requirement (10–4 Hz–1/2) for space-based gravitational wave detection, providing a critical component and technical support for high-gain optoelectronic feedback control and laser intensity noise suppression in space-based gravitational wave detection.
  • 图 1  0.1 mHz—1 Hz频段低噪声探测器原理图

    Fig. 1.  Schematic diagram of a low-noise detector in the 0.1 mHz–1 Hz frequency band.

    图 2  探测器静态测量原理示意图

    Fig. 2.  Schematic diagram illustrating the principle of static measurement in detectors.

    图 3  光电二极管不同工作模式下电子学噪声测试表征 (a) 时域测试图; (b) 频域测试图

    Fig. 3.  Characterization of photodiode electronic noise test in different operating modes: (a) Date results in time-domain; (b) noise power spectrum obtained by LPSD algorithm.

    图 4  光电探测器在不同运放下电子学噪声测试表征 (a) 时域测试图; (b) 频域测试图

    Fig. 4.  Photodetectors are characterized using different operating electronics noise tests: (a) Date results in time-domain; (b) noise power spectrum obtained by LPSD algorithm.

    图 5  光电探测器测试原理图, 其中Laser为固体激光器, ISO为光隔离器; λ/2为半波片, PBS为偏振分束器, Filter为光衰减器, PD为光电探测器; Meter为高精度数字万用表

    Fig. 5.  Photodetector test diagram, where Laser is soild-state laser; ISO is optical isolator; λ/2 is half-wave-plate: PBS is polarization beam splitter; Filter is optical attenuator; PD is photodetector; Meter is high-precision digital multimeter.

    图 6  探测器输入输出线性度表征

    Fig. 6.  Characterization of detector input and output linearity.

    图 7  探测器线性度测试噪声谱表征 (a) 时域测试图; (b) 频域测试图

    Fig. 7.  Detector linearity test noise spectral characterization: (a) Date results in time-domain; (b) noise power spectrum obtained by LPSD algorithm.

    表 1  三种低噪声运放芯片关键参数对比

    Table 1.  Comparison of the key parameters of the three op amp chip.

    Operational
    Amplifier model
    Offset voltage
    drift/(μV·℃–1)
    Input offset
    voltage/μV
    Input offset
    current/ nA
    Input noise voltage
    (0.1—10 Hz)/ nVp-p
    AD8671 0.3 30 8 77
    AD797 0.2 30 120 50
    LTC1151 0.01 0.5 0.02 1500
    下载: 导出CSV
  • [1]

    Abbott B P, Abbott R, Abbott T D, Acernese F, Ackley K, Adams C, Adams T, Addesso P, Adhikari R X, Adya V B 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [2]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams C, Adhikari R X, Adya V B, Affeldt C, Agathos M 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [3]

    Abbott R, Abbott T D, Abraham S, Acernese F, Ackley K, Adams A, Adams C, Adhikari R X, Adya V B, Affeldt C 2020 Phys. Rev. Lett. 125 101102Google Scholar

    [4]

    Sathyaprakash B S, Schutz B F 2009 Living Rev. Relativ. 12 2Google Scholar

    [5]

    Jennrich O 2009 Class. Quantum Grav. 26 153001Google Scholar

    [6]

    王在渊, 王洁浩, 李字航, 罗子人, 陈欣, 赵琴, 武延鹏, 郑耀辉 2023 物理学报 72 054205Google Scholar

    Wang Z Y, Wang J H, Li Z H, Luo Z R, Chen X, Zhao Q, Wu Y P, Zheng Y H 2023 Acta Phys. Sin. 72 054205Google Scholar

    [7]

    Badaracco F, Harms J, De Rossi C, Martynov D, Swinkels B L, Shoda A, van Heijningen J, Staley A, Matone L, Boschi V, Ohashi M, Hild S, Naticchioni L 2021 Phys. Rev. D 104 042006Google Scholar

    [8]

    李卫, 谢超帮, 李庆回, 孙瑜, 张亚斌, 武延鹏, 王雅君, 郑耀辉 2023 量子光学学报 29 24

    Li W, Xie C B, Li Q H, Sun Y, Zhang Y B, Wu Y P, Wang Y J, Zheng Y H 2023 Quantum Opt. 29 24

    [9]

    李庆回, 李卫, 孙瑜, 张亚斌, 武延鹏, 王雅君, 郑耀辉 2022 物理学报 71 164203Google Scholar

    Li Q H, Li W, Sun Y, Zhang Y B, Wu Y P, Wang Y J, Zheng Y H 2022 Acta Phys. Sin. 71 164203Google Scholar

    [10]

    Kwee P, Willke B, Danzmann K 2009 Opt. Lett. 34 2912Google Scholar

    [11]

    刘骏杨, 韩逸凡, 陈力荣, 赵琴, 武延鹏, 李林, 王雅君, 郑耀辉 2025 量子光学学报 31 040201

    Liu J Y, Han Y F, Chen L R, Zhao Q, Wu Y P, Li L, Wang Y J, Zheng Y H 2025 Quantum Opt. 31 040201

    [12]

    Vahlbruch H, Wilken D, Mechmet M, Willke B 2018 Phys. Rev. Lett. 121 173601Google Scholar

    [13]

    Gao L, Zheng L A, Lu B, Shi S P, Tian L, Zheng Y H 2024 Light Sci. Appl. 13 294Google Scholar

    [14]

    Luo Z, Wang Y, Wu Y, Mei J, Zhong Y, Hu Y, Yang S, Chen P, Chen X, Chen Y 2021 Prog. Theor. Exp. Phys. 2021 05A108Google Scholar

    [15]

    Luo J, Chen L S, Duan H Z 2016 Class. Quantum Grav. 33 035010Google Scholar

    [16]

    Buchler B C, Huntington E H, Harb C C 1998 Phys. Rev. A 57 1286Google Scholar

    [17]

    Tröbs M 2005 Ph. D. Dissertation (Hannover: Leibniz University Hannover

    [18]

    张骥 2020 博士学位论文 (合肥: 中国科学技术大学)

    Zhang J 2020 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [19]

    李玉琼, 王璐钰, 王晨昱 2019 光学精密工程 27 1710Google Scholar

    Li Y Q, Wang L Y, Wang C Y 2019 Opt. Precis. Eng. 27 1710Google Scholar

    [20]

    王炜杰, 李番, 李健博 2022 红外与激光工程 51 20220300Google Scholar

    Wang W J, Li F, Li J B 2022 Infrared Laser Eng. 51 20220300Google Scholar

    [21]

    郑立昂, 李番, 王嘉伟 2023 光子学报 52 282

    Zheng L A, Li F, Wang J W 2023 Acta Photonica Sin. 52 282

    [22]

    Understanding and Eliminating 1/f Noise, Robert K https://www.analog.com/en/resources/analog-dialogue/articles/2017/04/21/10/42/understanding-and-eliminating-1-f-noise.html [2024-12-10]

    [23]

    Measuring 2nV/√Hz Noise and 120 dB Supply Rejection on Linear Regulators, Todd O, Amit P https://www.analog.com/cn/resources/app-notes/an-159.html [2024-12-10]

    [24]

    Sallusti M, Gath P, Weise D, Rivas M, Vitelli M 2009 Class. Quantum Grav. 26 094015Google Scholar

    [25]

    Cutler C, Thorne K S 2002 General Relativity and Gravitation (Singapore: World Scientific) pp72-111

    [26]

    Hayashida T, Nanjo T, Furukawa A, Yamamuka M 2017 Appl. Phys. Express 10 061003Google Scholar

    [27]

    Li W S, Nomoto K, Pilla M, Pan M, Gao X, Jena D, Xing H G 2017 IEEE Trans. Electron Devices 64 1635Google Scholar

    [28]

    Singh R, Cooper J A, Melloch M R, Chow T P, Palmour J W 2002 IEEE Trans. Electron Devices 49 665Google Scholar

    [29]

    Zhou H J, Yang W H, Li Z X, Li X F, Zheng Y H 2014 Rev. Sci. Instrum. 85 013111Google Scholar

    [30]

    Using MCP6491 Op Amps for Photodetection Applications, Yang Zhen https://ww1.microchip.com/downloads/en/Appnotes/01494A.pdf [2024-12-10]

    [31]

    Graeme J G 1996 Photodiode Amplifiers: Op Amp Solutions 1st ed (New York: McGraw-Hill) pp 21-23

    [32]

    Chilingarian A 1995 Pattern Recognit. Lett. 16 335

    [33]

    Chen X, Luo M, Hu R Z, Zhang R J, Yao P F, Xu J J 2019 J. Manuf. Process. 41 111Google Scholar

    [34]

    Williams J 2001 Electrical Design News: The Magazine of the Electronics Industry 46 83

    [35]

    李番, 王嘉伟, 高子超, 李林, 武延鹏, 王雅君, 郑耀辉 2022 物理学报 71 209501Google Scholar

    Li F, Wang J W, Gao Z C, Li L, Wu Y P, Wang Y J, Zheng Y H 2022 Acta Phys. Sin. 71 209501Google Scholar

  • [1] 李响, 王嘉伟, 李番, 黄天时, 党昊, 赵得胜, 田龙, 史少平, 李卫, 尹王保, 郑耀辉. 面向地基引力波探测频段的超低噪声激光强度噪声评估系统. 物理学报, doi: 10.7498/aps.74.20241319
    [2] 孙堂友, 余燕丽, 覃祖彬, 陈赞辉, 陈均丽, 江玥, 张法碧. 基于TiO2纳米柱的多波段响应Cs2AgBiBr6双钙钛矿光电探测器. 物理学报, doi: 10.7498/aps.73.20231919
    [3] 程学明, 崔文宇, 祝鲁平, 王霞, 刘宗明, 曹丙强. 具有快响应速度和低暗电流的垂直MSM型CsPbBr3薄膜光电探测器. 物理学报, doi: 10.7498/aps.73.20241075
    [4] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, doi: 10.7498/aps.73.20240267
    [5] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, doi: 10.7498/aps.73.20231645
    [6] 乐陶然, 穆衡霖, 徐欣, 谈宜东, 尉昊赟, 李岩. 用于星间激光干涉测量的分频相位计辅助弱光锁相. 物理学报, doi: 10.7498/aps.72.20221941
    [7] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, doi: 10.7498/aps.72.20222021
    [8] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, doi: 10.7498/aps.72.20222303
    [9] 王嘉伟, 李健博, 李番, 郑立昂, 高子超, 安炳南, 马正磊, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的程控低噪声高精度电压基准源. 物理学报, doi: 10.7498/aps.72.20222119
    [10] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器. 物理学报, doi: 10.7498/aps.72.20222127
    [11] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, doi: 10.7498/aps.71.20220388
    [12] 胡紫婷, 舒鑫, 王香, 李跃, 徐闰, 洪峰, 马忠权, 蒋最敏, 徐飞. 双配体策略制备大气环境下性能稳定的CsPbIBr2光电探测器. 物理学报, doi: 10.7498/aps.71.20212143
    [13] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的激光强度噪声评估系统. 物理学报, doi: 10.7498/aps.71.20220841
    [14] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, doi: 10.7498/aps.70.20210859
    [15] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, doi: 10.7498/aps.70.20210138
    [16] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.69.20191960
    [17] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.67.20180129
    [18] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, doi: 10.7498/aps.67.20180502
    [19] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, doi: 10.7498/aps.66.198502
    [20] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, doi: 10.7498/aps.59.4524
计量
  • 文章访问数:  461
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-26
  • 修回日期:  2024-12-25
  • 上网日期:  2025-01-08

/

返回文章
返回