-
硅(Si)作为最重要的半导体材料之一, 被广泛应用于太阳电池、光电探测器等光电器件中. 由于硅和空气之间的折射率差异, 大量的入射光在硅基表面即被反射. 为了抑制这种反射带来的损失, 多种具有强陷光效应的硅纳米结构被研发出来. 采用干法蚀刻方案多数存在成本高昂、制备复杂的问题, 而湿法蚀刻方案所制备的硅纳米线阵列则存在间距等参数可控性较低、异质结有效面积较小等问题. 聚苯乙烯微球掩膜法可结合干法及湿法蚀刻各自的优点, 容易得到周期性硅纳米线(柱)阵列. 本文首先概述了硅纳米线结构的性质和制备方法, 总结了有效提升硅纳米线(柱)阵列光电探测器性能的策略, 并分析了其中存在的问题. 进而, 讨论了基于硅纳米线(柱)阵列光电探测器的最新进展, 重点关注其结构、光敏层的形貌以及提高光电探测器性能参数的方法. 最后, 简要介绍了其存在的主要问题及可能的解决方案.As one of the most important semiconductor materials, silicon (Si) is widely used in optoelectronic devices such as solar cells and photodetectors. Owing to the difference in refractive index between silicon and air, a large amount of incident light is reflected back into the air from the silicon surface. In order to suppress the loss caused by this reflection, a variety of silicon nanostructures with strong trapping effect have been developed. Most of the dry-etching schemes encounter the problems of high cost and complex preparation, while the silicon nanowires array prepared by the wet-etching schemes has the problems of low controllability of some parameters such as the spacing between two adjacent nanowires, and the small effective area of heterojunction. The method of using polystyrene microsphere as the mask can integrate the advantages of dry-etching method and wet-etching method, and it is easy to obtain periodic silicon nanowires (pillars) array. In this paper, first, we summarize the properties and preparation methods for silicon nanowires structure, the strategies to effectively improve the performance of silicon nanowires (pillars) array photodetectors, Then we analyze the existing problems. Further, the latest developments of silicon nanowires (pillars) array photodetector are discussed, and the structure, morphology of photosensitive layer and methods to improve the performance parameters of silicon nanowires (pillars) array photodetector are analyzed. Among them, we focus on the ultraviolet light sensitive silicon based photodetector and its method to show tunable and selective resonance absorption through leaky mode resonance, the silicon nanowires array photodetector modified with metal nanoparticles and the method of improving performance through surface plasmon effect, and plasmon hot electrons. Heterojunction photodetectors composed of various low-dimensional materials and silicon nanowires (pillars) array, and methods to improve the collection efficiency of photogenerated charge carriers through the “core/shell” structure, methods to expand the detection band range of silicon-based photodetectors by integrating down-conversion light-emitting materials and silicon nanowires (pillars) array, flexible silicon nanowires array photodetectors and their various preparation methods, are all introduced. Then, the main problems that a large number of defect states will be generated on the silicon nanostructure surface in the MACE process are briefly introduced, and several possible solutions for defect passivation are also presented. Finally, the future development for silicon nanowires (pillars) array photodetectors is prospected.
-
Keywords:
- silicon nanowires /
- silicon nanowires array /
- dry-etching and wet-etching /
- metal-assisted chemical etching /
- photodetectors
[1] Li C, Liu D, Dai D 2019 Nanophotonics 8 227Google Scholar
[2] Adinolfi V, Sargent E H 2017 Nature 542 324Google Scholar
[3] Lee S H, Kang J S, Kim D 2018 Materials 11 2557Google Scholar
[4] Margalit N, Xiang C, Bowers S M, Bjorlin A, Blum R, Bowers J E 2021 Appl. Phys. Lett. 118 220501Google Scholar
[5] Wang Y, Ding K, Sun B, Lee ST, Jie J 2016 Nano Res. 9 72Google Scholar
[6] Liu C, Guo J, Yu L, Li J, Zhang M, Li H, Shi Y, Dai D 2021 Light Sci. Appl. 10 123Google Scholar
[7] Zhou J, Xin K, Zhao X, Li D, Wei Z, Xia J 2022 Sci. China Mater. 65 876Google Scholar
[8] Liu J J, Qu J L, Kirchartz T, Song J 2021 J. Mater. Chem. A 9 20919Google Scholar
[9] Li C, Zhao J H, Chen Z G 2021 J. Alloy. Compd. 883 160765Google Scholar
[10] Arjmand T, Legallais M, Nguyen T T T, et al. 2022 Nanomaterials 12 1043Google Scholar
[11] Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. 31 050825Google Scholar
[12] Huo C, Wang J, Fu H, Li X, Yang Y, Wang H, Mateen A, Farid G, Peng K Q 2020 Adv. Funct. Mater. 30 2005744Google Scholar
[13] Tian W, Sun H, Chen L, Wangyang P, Chen X, Xiong J, Li L 2019 InfoMat 1 140Google Scholar
[14] Um H D, Solanki A, Jayaraman A, Gordon R G, Habbal F 2019 ACS Nano 13 11717Google Scholar
[15] Wang X, Tang Y, Wang W, Zhao H, Song Y, Kang C, Wang K 2022 Nanomaterials 12 1824Google Scholar
[16] Rasool K, Rafiq M A, Ahmad M, Imran Z, Batool S S, Hasan M M 2013 AIP Adv. 3 082111Google Scholar
[17] Liu J Y, Wang J J, Lin D H, Wang J, Fu C, Liang F X, Li X, Gu Z P, Wu D, Luo L B 2022 ACS Appl. Mater. Interfaces 14 32341Google Scholar
[18] Ohmi T, Imaoka T, Kezuka T, Takano J, Kogure M 1993 J. Electrochem. Soc. 140 811Google Scholar
[19] Morinaga H, Suyama M, Ohmi T 1994 J. Electrochem. Soc. 141 2834Google Scholar
[20] Kim J S, Morita H, Joo J D, Ohmi T 1997 J. Electrochem. Soc. 144 3275Google Scholar
[21] Morinaga H, Futatsuki T, Ohmi T, Fuchita E, Oda M, Hayashi C 1995 J. Electrochem. Soc. 142 966Google Scholar
[22] Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J 2005 Angew. Chem. Int. Edit. 44 2737Google Scholar
[23] Peng K Q, Hu J J, Yan Y J, Wu Y, Fang H, Xu Y, Lee S T, Zhu J 2006 Adv. Funct. Mater. 16 387Google Scholar
[24] Peng K, Lu A, Zhang R, Lee S T 2008 Adv. Funct. Mater. 18 3026Google Scholar
[25] Zhang X G, Collins S D, Smith R L 1989 J. Electrochem. Soc. 136 1561Google Scholar
[26] Kolasinski K W 2010 J. Phys. Chem. C 114 22098Google Scholar
[27] Turner D R 1960 J. Electrochem. Soc. 107 810Google Scholar
[28] Peng K Q, Yan Y J, Gao S P, Zhu J 2002 Adv. Mater. 14 1164Google Scholar
[29] Koynov S, Brandt M S, Stutzmann M 2006 Appl. Phys. Lett. 88 203107Google Scholar
[30] Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee S 2006 Chem. Eur. J. 12 7942Google Scholar
[31] Peng K, Zhu J 2003 J. Electroanal. Chem. 558 35Google Scholar
[32] Tsujino K, Matsumura M 2005 Electrochem. Solid-St. 8 C193Google Scholar
[33] Hildreth O J, Fedorov A G, Wong C P 2012 ACS Nano 6 10004Google Scholar
[34] Chen H, Wang H, Zhang X H, Lee C S, Lee S T 2010 Nano Lett. 10 864Google Scholar
[35] Kim J, Kim Y H, Choi S H, Lee W 2011 ACS Nano 5 5242Google Scholar
[36] Chen Y, Li L, Zhang C, Tuan C C, Chen X, Gao J, Wong C P 2017 Nano Lett. 17 1014Google Scholar
[37] Chen Y, Zhang C, Li L, Tuan C C, Wu F, Chen X, Gao J, Ding Y, Wong C P 2017 Nano Lett. 17 4304Google Scholar
[38] Huang Z, Fang H, Zhu J 2007 Adv. Mater. 19 744Google Scholar
[39] Pudasaini P R, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A, Ayon A A 2013 ACS Appl. Mater. Interfaces 5 9620Google Scholar
[40] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar
[41] Hildreth O J, Brown D, Wong C P 2011 Adv. Funct. Mater. 21 3119Google Scholar
[42] Wang J, Hu Y, Zhao H, Fu H, Wang Y, Huo C, Peng K Q 2018 Adv. Mater. Interfaces 5 1801132Google Scholar
[43] Lai R A, Hymel T M, Narasimhan V K, Cui Y 2016 ACS Appl. Mater. Interfaces 8 8875Google Scholar
[44] Li L, Tuan C C, Zhang C, Chen Y, Lian G, Wong C P 2019 J. Microelectromech. Syst. 28 143Google Scholar
[45] Li L, Zhao X, Wong C P 2015 ECS J. Solid State Sci. Technol. 4 P337Google Scholar
[46] Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar
[47] Han C, Chen Z, Zhang N, Colmenares J C, Xu Y J 2015 Adv. Funct. Mater. 25 221Google Scholar
[48] Reddy A L M, Gowda S R, Shaijumon M M, Ajayan P M 2012 Adv. Mater. 24 5045Google Scholar
[49] Lu W, Lieber C M 2007 Nat. Mater. 6 841Google Scholar
[50] Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296Google Scholar
[51] Kholmanov I N, Domingues S H, Chou H, et al. 2013 ACS Nano 7 1811Google Scholar
[52] Huang Z G, Lin X X, Zeng Y, et al. 2015 Sol. Energy Mater. Sol. Cells 143 302Google Scholar
[53] Sivakov V, Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen S H 2009 Nano Lett. 9 1549Google Scholar
[54] Wan X, Xu Y, Guo H, et al. 2017 NPJ 2D Mater. Appl. 1 4Google Scholar
[55] Mokkapati S, Saxena D, Tan H H, Jagadish C 2015 Sci. Rep. 5 15339Google Scholar
[56] Fountaine K T, Whitney W S, Atwater H A 2014 J. Appl. Phys. 116 153106Google Scholar
[57] Cao L, White J S, Park J S, Schuller J A, Clemens B M, Brongersma M L 2009 Nat. Mater. 8 643Google Scholar
[58] Wang B, Leu P W 2012 Opt. Lett. 37 3756Google Scholar
[59] Wang J J, Fu C, Cheng H Y, Tong X W, Zhang Z X, Wu D, Chen L M, Liang F X, Luo L B 2021 ACS Nano 15 16729Google Scholar
[60] Nusir A I, Bauman S J, Marie M S, Herzog J B, Manasreh M O 2017 Appl. Phys. Lett. 111 171103Google Scholar
[61] Luo L B, Zeng L H, Xie C, Yu Y Q, Liang F X, Wu C Y, Wang L, Hu J G 2014 Sci. Rep. 4 3914Google Scholar
[62] Kim K, Yoon S, Seo M, Lee S, Cho H, Meyyappan M, Baek C K 2019 Nat. Electron. 2 572Google Scholar
[63] Vasa P, Lienau C 2010 Angew. Chem. Int. Edit. 49 2476Google Scholar
[64] Schaadt D M, Feng B, Yu E T 2005 Appl. Phys. Lett. 86 063106Google Scholar
[65] Qi Z, Zhai Y, Wen L, Wang Q, Chen Q, Iqbal S, Chen G, Xu J, Tu Y 2017 Nanotechnology 28 275202Google Scholar
[66] Huang Y, Liang H, Zhang Y, Yin S, Cai C, Liu W, Jia T 2021 ACS Appl. Nano Mater. 4 1567Google Scholar
[67] Wang H, Wang F, Xu T, et al. 2021 Nano Lett. 21 7761Google Scholar
[68] Mao C H, Dubey A, Lee F J, et al. 2021 ACS Appl. Mater. Interfaces 13 4126Google Scholar
[69] Xie C, Nie B, Zeng L, Liang F X, Wang M Z, Luo L, Feng M, Yu Y, Wu C Y, Wu Y, Yu S H 2014 ACS Nano 8 4015Google Scholar
[70] Mondal H, Dey T, Basori R 2021 ACS Appl. Nano Mater. 4 11938Google Scholar
[71] Chandra A, Giri S, Das B, Ghosh S, Sarkar S, Chattopadhyay K K 2021 Appl. Surf. Sci. 548 149256Google Scholar
[72] Liang W, Wang L, Li Y, Zhang F, Chen X, Wu D, Tian Y, Li X, Shan C, Shi Z 2021 Mater. Today Phys. 18 100398Google Scholar
[73] Feng B, Pan X, Liu T, Tian S, Wang T, Chen Y 2021 Nano Lett. 21 5655Google Scholar
[74] Tong X W, Wang J J, Li J X, Hu X F, Wu D, Luo L B 2021 Sensor. Actuat. A-Phys. 322 112625Google Scholar
[75] Sun K, Jing Y, Park N, Li C, Bando Y, Wang D 2010 J. Am. Chem. Soc. 132 15465Google Scholar
[76] Hong Q, Cao Y, Xu J, Lu H, He J, Sun J L 2014 ACS Appl. Mater. Interfaces 6 20887Google Scholar
[77] Cao Y, Zhu J, Xu J, He J, Sun J L, Wang Y, Zhao Z 2014 Small 10 2345Google Scholar
[78] Das B, Das N S, Sarkar S, Chatterjee B K, Chattopadhyay K K 2017 ACS Appl. Mater. Interfaces 9 22788Google Scholar
[79] Gong C, Zhang Y, Chen W, Chu J, Lei T, Pu J, Dai L, Wu C, Cheng Y, Zhai T, Li L, Xiong J 2017 Adv. Sci. 4 1700231Google Scholar
[80] Henning A, Sangwan V K, Bergeron H, et al. 2018 ACS Appl. Mater. Interfaces 10 16760Google Scholar
[81] Asuo I M, Banerjee D, Pignolet A, Nechache R, Cloutier S G 2021 Phys. Status Solidi R. 15 2000537Google Scholar
[82] Zhao J, Liu H, Deng L, Bai M, Xie F, Wen S, Liu W 2021 Sensors 21 6146Google Scholar
[83] Mao J, Zhang B, Shi Y, Wu X, He Y, Wu D, Jie J, Lee C S, Zhang X 2022 Adv. Funct. Mater. 32 2108174Google Scholar
[84] Lu J, Sheng X, Tong G, Yu Z, Sun X, Yu L, Xu X, Wang J, Xu J, Shi Y, Chen K 2017 Adv. Mater. 29 1700400Google Scholar
[85] Mihalache I, Radoi A, Pascu R, Romanitan C, Vasile E, Kusko M 2017 ACS Appl. Mater. Interfaces 9 29234Google Scholar
[86] Zhang M, Wang L, Meng L, et al. 2018 Adv. Opt. Mater. 6 1800077Google Scholar
[87] Weisse J M, Kim D R, Lee C H, Zheng X 2011 Nano Lett. 11 1300Google Scholar
[88] Mulazimoglu E, Coskun S, Gunoven M, Butun B, Ozbay E, Turan R, Unalan H E 2013 Appl. Phys. Lett. 103 083114Google Scholar
[89] Xu Y, Shen H, Yue Z, Wang S, Zhao Q, Wang Z 2022 Surf. Interfaces 33 102288Google Scholar
[90] Chee K W A, Ghosh B K, Saad I, Hong Y, Xia Q H, Gao P, Ye J, Ding Z J 2022 Nano Energy 95 106899Google Scholar
[91] Dan Y, Seo K, Takei K, Meza J H, Javey A, Crozier K B 2011 Nano Lett. 11 2527Google Scholar
[92] Yan J, Ge K, Li H, Yang X, Chen J, Wan L, Guo J, Li F, Xu Y, Song D, Flavel B S, Chen J 2021 Nanoscale 13 11439Google Scholar
-
-
[1] Li C, Liu D, Dai D 2019 Nanophotonics 8 227Google Scholar
[2] Adinolfi V, Sargent E H 2017 Nature 542 324Google Scholar
[3] Lee S H, Kang J S, Kim D 2018 Materials 11 2557Google Scholar
[4] Margalit N, Xiang C, Bowers S M, Bjorlin A, Blum R, Bowers J E 2021 Appl. Phys. Lett. 118 220501Google Scholar
[5] Wang Y, Ding K, Sun B, Lee ST, Jie J 2016 Nano Res. 9 72Google Scholar
[6] Liu C, Guo J, Yu L, Li J, Zhang M, Li H, Shi Y, Dai D 2021 Light Sci. Appl. 10 123Google Scholar
[7] Zhou J, Xin K, Zhao X, Li D, Wei Z, Xia J 2022 Sci. China Mater. 65 876Google Scholar
[8] Liu J J, Qu J L, Kirchartz T, Song J 2021 J. Mater. Chem. A 9 20919Google Scholar
[9] Li C, Zhao J H, Chen Z G 2021 J. Alloy. Compd. 883 160765Google Scholar
[10] Arjmand T, Legallais M, Nguyen T T T, et al. 2022 Nanomaterials 12 1043Google Scholar
[11] Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol. 31 050825Google Scholar
[12] Huo C, Wang J, Fu H, Li X, Yang Y, Wang H, Mateen A, Farid G, Peng K Q 2020 Adv. Funct. Mater. 30 2005744Google Scholar
[13] Tian W, Sun H, Chen L, Wangyang P, Chen X, Xiong J, Li L 2019 InfoMat 1 140Google Scholar
[14] Um H D, Solanki A, Jayaraman A, Gordon R G, Habbal F 2019 ACS Nano 13 11717Google Scholar
[15] Wang X, Tang Y, Wang W, Zhao H, Song Y, Kang C, Wang K 2022 Nanomaterials 12 1824Google Scholar
[16] Rasool K, Rafiq M A, Ahmad M, Imran Z, Batool S S, Hasan M M 2013 AIP Adv. 3 082111Google Scholar
[17] Liu J Y, Wang J J, Lin D H, Wang J, Fu C, Liang F X, Li X, Gu Z P, Wu D, Luo L B 2022 ACS Appl. Mater. Interfaces 14 32341Google Scholar
[18] Ohmi T, Imaoka T, Kezuka T, Takano J, Kogure M 1993 J. Electrochem. Soc. 140 811Google Scholar
[19] Morinaga H, Suyama M, Ohmi T 1994 J. Electrochem. Soc. 141 2834Google Scholar
[20] Kim J S, Morita H, Joo J D, Ohmi T 1997 J. Electrochem. Soc. 144 3275Google Scholar
[21] Morinaga H, Futatsuki T, Ohmi T, Fuchita E, Oda M, Hayashi C 1995 J. Electrochem. Soc. 142 966Google Scholar
[22] Peng K, Wu Y, Fang H, Zhong X, Xu Y, Zhu J 2005 Angew. Chem. Int. Edit. 44 2737Google Scholar
[23] Peng K Q, Hu J J, Yan Y J, Wu Y, Fang H, Xu Y, Lee S T, Zhu J 2006 Adv. Funct. Mater. 16 387Google Scholar
[24] Peng K, Lu A, Zhang R, Lee S T 2008 Adv. Funct. Mater. 18 3026Google Scholar
[25] Zhang X G, Collins S D, Smith R L 1989 J. Electrochem. Soc. 136 1561Google Scholar
[26] Kolasinski K W 2010 J. Phys. Chem. C 114 22098Google Scholar
[27] Turner D R 1960 J. Electrochem. Soc. 107 810Google Scholar
[28] Peng K Q, Yan Y J, Gao S P, Zhu J 2002 Adv. Mater. 14 1164Google Scholar
[29] Koynov S, Brandt M S, Stutzmann M 2006 Appl. Phys. Lett. 88 203107Google Scholar
[30] Peng K, Fang H, Hu J, Wu Y, Zhu J, Yan Y, Lee S 2006 Chem. Eur. J. 12 7942Google Scholar
[31] Peng K, Zhu J 2003 J. Electroanal. Chem. 558 35Google Scholar
[32] Tsujino K, Matsumura M 2005 Electrochem. Solid-St. 8 C193Google Scholar
[33] Hildreth O J, Fedorov A G, Wong C P 2012 ACS Nano 6 10004Google Scholar
[34] Chen H, Wang H, Zhang X H, Lee C S, Lee S T 2010 Nano Lett. 10 864Google Scholar
[35] Kim J, Kim Y H, Choi S H, Lee W 2011 ACS Nano 5 5242Google Scholar
[36] Chen Y, Li L, Zhang C, Tuan C C, Chen X, Gao J, Wong C P 2017 Nano Lett. 17 1014Google Scholar
[37] Chen Y, Zhang C, Li L, Tuan C C, Wu F, Chen X, Gao J, Ding Y, Wong C P 2017 Nano Lett. 17 4304Google Scholar
[38] Huang Z, Fang H, Zhu J 2007 Adv. Mater. 19 744Google Scholar
[39] Pudasaini P R, Ruiz-Zepeda F, Sharma M, Elam D, Ponce A, Ayon A A 2013 ACS Appl. Mater. Interfaces 5 9620Google Scholar
[40] Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar A, Yang P 2008 Nature 451 163Google Scholar
[41] Hildreth O J, Brown D, Wong C P 2011 Adv. Funct. Mater. 21 3119Google Scholar
[42] Wang J, Hu Y, Zhao H, Fu H, Wang Y, Huo C, Peng K Q 2018 Adv. Mater. Interfaces 5 1801132Google Scholar
[43] Lai R A, Hymel T M, Narasimhan V K, Cui Y 2016 ACS Appl. Mater. Interfaces 8 8875Google Scholar
[44] Li L, Tuan C C, Zhang C, Chen Y, Lian G, Wong C P 2019 J. Microelectromech. Syst. 28 143Google Scholar
[45] Li L, Zhao X, Wong C P 2015 ECS J. Solid State Sci. Technol. 4 P337Google Scholar
[46] Li Y, Shi Z F, Li X J, Shan C X 2019 Chin. Phys. B 28 017803Google Scholar
[47] Han C, Chen Z, Zhang N, Colmenares J C, Xu Y J 2015 Adv. Funct. Mater. 25 221Google Scholar
[48] Reddy A L M, Gowda S R, Shaijumon M M, Ajayan P M 2012 Adv. Mater. 24 5045Google Scholar
[49] Lu W, Lieber C M 2007 Nat. Mater. 6 841Google Scholar
[50] Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H 2011 J. Am. Chem. Soc. 133 7296Google Scholar
[51] Kholmanov I N, Domingues S H, Chou H, et al. 2013 ACS Nano 7 1811Google Scholar
[52] Huang Z G, Lin X X, Zeng Y, et al. 2015 Sol. Energy Mater. Sol. Cells 143 302Google Scholar
[53] Sivakov V, Andrä G, Gawlik A, Berger A, Plentz J, Falk F, Christiansen S H 2009 Nano Lett. 9 1549Google Scholar
[54] Wan X, Xu Y, Guo H, et al. 2017 NPJ 2D Mater. Appl. 1 4Google Scholar
[55] Mokkapati S, Saxena D, Tan H H, Jagadish C 2015 Sci. Rep. 5 15339Google Scholar
[56] Fountaine K T, Whitney W S, Atwater H A 2014 J. Appl. Phys. 116 153106Google Scholar
[57] Cao L, White J S, Park J S, Schuller J A, Clemens B M, Brongersma M L 2009 Nat. Mater. 8 643Google Scholar
[58] Wang B, Leu P W 2012 Opt. Lett. 37 3756Google Scholar
[59] Wang J J, Fu C, Cheng H Y, Tong X W, Zhang Z X, Wu D, Chen L M, Liang F X, Luo L B 2021 ACS Nano 15 16729Google Scholar
[60] Nusir A I, Bauman S J, Marie M S, Herzog J B, Manasreh M O 2017 Appl. Phys. Lett. 111 171103Google Scholar
[61] Luo L B, Zeng L H, Xie C, Yu Y Q, Liang F X, Wu C Y, Wang L, Hu J G 2014 Sci. Rep. 4 3914Google Scholar
[62] Kim K, Yoon S, Seo M, Lee S, Cho H, Meyyappan M, Baek C K 2019 Nat. Electron. 2 572Google Scholar
[63] Vasa P, Lienau C 2010 Angew. Chem. Int. Edit. 49 2476Google Scholar
[64] Schaadt D M, Feng B, Yu E T 2005 Appl. Phys. Lett. 86 063106Google Scholar
[65] Qi Z, Zhai Y, Wen L, Wang Q, Chen Q, Iqbal S, Chen G, Xu J, Tu Y 2017 Nanotechnology 28 275202Google Scholar
[66] Huang Y, Liang H, Zhang Y, Yin S, Cai C, Liu W, Jia T 2021 ACS Appl. Nano Mater. 4 1567Google Scholar
[67] Wang H, Wang F, Xu T, et al. 2021 Nano Lett. 21 7761Google Scholar
[68] Mao C H, Dubey A, Lee F J, et al. 2021 ACS Appl. Mater. Interfaces 13 4126Google Scholar
[69] Xie C, Nie B, Zeng L, Liang F X, Wang M Z, Luo L, Feng M, Yu Y, Wu C Y, Wu Y, Yu S H 2014 ACS Nano 8 4015Google Scholar
[70] Mondal H, Dey T, Basori R 2021 ACS Appl. Nano Mater. 4 11938Google Scholar
[71] Chandra A, Giri S, Das B, Ghosh S, Sarkar S, Chattopadhyay K K 2021 Appl. Surf. Sci. 548 149256Google Scholar
[72] Liang W, Wang L, Li Y, Zhang F, Chen X, Wu D, Tian Y, Li X, Shan C, Shi Z 2021 Mater. Today Phys. 18 100398Google Scholar
[73] Feng B, Pan X, Liu T, Tian S, Wang T, Chen Y 2021 Nano Lett. 21 5655Google Scholar
[74] Tong X W, Wang J J, Li J X, Hu X F, Wu D, Luo L B 2021 Sensor. Actuat. A-Phys. 322 112625Google Scholar
[75] Sun K, Jing Y, Park N, Li C, Bando Y, Wang D 2010 J. Am. Chem. Soc. 132 15465Google Scholar
[76] Hong Q, Cao Y, Xu J, Lu H, He J, Sun J L 2014 ACS Appl. Mater. Interfaces 6 20887Google Scholar
[77] Cao Y, Zhu J, Xu J, He J, Sun J L, Wang Y, Zhao Z 2014 Small 10 2345Google Scholar
[78] Das B, Das N S, Sarkar S, Chatterjee B K, Chattopadhyay K K 2017 ACS Appl. Mater. Interfaces 9 22788Google Scholar
[79] Gong C, Zhang Y, Chen W, Chu J, Lei T, Pu J, Dai L, Wu C, Cheng Y, Zhai T, Li L, Xiong J 2017 Adv. Sci. 4 1700231Google Scholar
[80] Henning A, Sangwan V K, Bergeron H, et al. 2018 ACS Appl. Mater. Interfaces 10 16760Google Scholar
[81] Asuo I M, Banerjee D, Pignolet A, Nechache R, Cloutier S G 2021 Phys. Status Solidi R. 15 2000537Google Scholar
[82] Zhao J, Liu H, Deng L, Bai M, Xie F, Wen S, Liu W 2021 Sensors 21 6146Google Scholar
[83] Mao J, Zhang B, Shi Y, Wu X, He Y, Wu D, Jie J, Lee C S, Zhang X 2022 Adv. Funct. Mater. 32 2108174Google Scholar
[84] Lu J, Sheng X, Tong G, Yu Z, Sun X, Yu L, Xu X, Wang J, Xu J, Shi Y, Chen K 2017 Adv. Mater. 29 1700400Google Scholar
[85] Mihalache I, Radoi A, Pascu R, Romanitan C, Vasile E, Kusko M 2017 ACS Appl. Mater. Interfaces 9 29234Google Scholar
[86] Zhang M, Wang L, Meng L, et al. 2018 Adv. Opt. Mater. 6 1800077Google Scholar
[87] Weisse J M, Kim D R, Lee C H, Zheng X 2011 Nano Lett. 11 1300Google Scholar
[88] Mulazimoglu E, Coskun S, Gunoven M, Butun B, Ozbay E, Turan R, Unalan H E 2013 Appl. Phys. Lett. 103 083114Google Scholar
[89] Xu Y, Shen H, Yue Z, Wang S, Zhao Q, Wang Z 2022 Surf. Interfaces 33 102288Google Scholar
[90] Chee K W A, Ghosh B K, Saad I, Hong Y, Xia Q H, Gao P, Ye J, Ding Z J 2022 Nano Energy 95 106899Google Scholar
[91] Dan Y, Seo K, Takei K, Meza J H, Javey A, Crozier K B 2011 Nano Lett. 11 2527Google Scholar
[92] Yan J, Ge K, Li H, Yang X, Chen J, Wan L, Guo J, Li F, Xu Y, Song D, Flavel B S, Chen J 2021 Nanoscale 13 11439Google Scholar
计量
- 文章访问数: 8428
- PDF下载量: 355
- 被引次数: 0