搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅薄膜太阳电池表面纳米线阵列光学设计

耿超 郑义 张永哲 严辉

引用本文:
Citation:

硅薄膜太阳电池表面纳米线阵列光学设计

耿超, 郑义, 张永哲, 严辉

Optical design of nanowire array on silicon thin film solar cell

Geng Chao, Zheng Yi, Zhang Yong-Zhe, Yan Hui
PDF
导出引用
  • 陷光结构的优化是增加硅薄膜太阳电池光吸收进而提高其效率的关键技术之一. 以硅纳米线阵列为代表的光子晶体微纳陷光结构具有突破传统陷光结构Yablonovith极限的巨大潜力. 通常硅纳米线阵列可以用作太阳电池的增透减反层、轴向p-n结、径向p-n结. 针对以上三种应用, 本文运用有限时域差分(FDTD)法系统研究了硅纳米线阵列在 300-1100 nm 波段的光学特性. 结果表明, 当硅纳米线作为太阳电池的减反层时, 周期P=300 nm, 高度H=1.5 m, 填充率(FR)为0.282条件下时, 反射率最低为7.9%. 当硅纳米线作为轴向p-n结电池时, P=500 nm, H=1.5 m, FR=0.55条件下纳米线阵列的吸收效率高达22.3%. 硅纳米线作为径向p-n结电池时, 其光吸收主要依靠纳米线, 硅纳米线P=300 nm, H=6 m, FR= 0.349 条件下其吸收效率高达32.4%, 进一步提高其高度吸收效率变化不再明显. 此外, 本文还分析了非周期性硅纳米线阵列的光学性质, 与周期性硅纳米线阵列相比, 直径随机分布和位置随机分布的硅纳米线阵列都可以使吸收效率进一步提高, 相比于周期性硅纳米线阵列, 优化后直径随机分布的硅纳米线阵列吸收效率提高了39%, 吸收效率为27.8%. 本文运用FDTD法对硅纳米线阵列的光学特性进行设计与优化, 为硅纳米线阵列在太阳电池中的应用提供了理论支持.
    Light trapping has been considered as an important strategy to increase the conversion efficiency of silicon thin film solar cell. It shows that photonic crystal with feature size comparable to the wavelength, for example, the silicon nanowire array has a great potential to exceed the conventional Yablonovitch 4n2 limit. Silicon nanowire array has been designed and constructed on silicon thin film solar cell due to its excellent optical properties. Generally, silicon nanowire array is used as the antireflection coating, axial or radial p-n junction of solar cell. Different applications of the silicon nanowire arrays need different optical properties. Theoretical investigations show that the optical property is strongly dependent on the structural parameters. In this work, several structural parameters including period (P), diameter (D), height (H), and filling ratio (FR) are optimized when silicon nanowire array plays different roles. Here, by using the finite difference time domain (FDTD) method, we focus on the relations between the structural parameters and the optical properties including reflection and absorption from 300 to 1100 nm. In the FDTD simulation model, the substrate material is crystal silicon film, and the silicon nanowire array is on the surface of the substrate. In this calculation, the top and the bottom of the unit cell are air with perfectly matched layers, and with periodic boundary conditions at the side walls. When the silicon nanowire array is used as the antireflection coating, the silicon nanowire array shows a lowest reflection (7.9%) with H=1.5 m, P=300 nm, and FR=0.282. When silicon nanowire array acts as axial p-n junction solar cell (the p-n junction is formed by substrate and nanowire array), the absorption efficiency reaches a maximum value of 22.3% with H=1.5 m, P=500 nm, and FR=0.55. When the silicon nanowire array acts as the radial p-n junction solar cell, the absorption efficiency could obtain a maximum value of 32.4% with H=6 m, P=300 nm, FR=0.349. In addition, the optical properties of silicon nanowire array with random diameter and position are also analyzed here. The absorption efficiency of optimized random silicon nanowire array reaches 27.8% compared with a value of 19.9% from ordered silicon nanowire array. All of these results presented here can provide a theoretical support for the silicon thin film solar cell to increase the efficiency in the future application.
      通信作者: 张永哲, yzzhang@bjut.edu.cn;hyan@bjut.edu.cn ; 严辉, yzzhang@bjut.edu.cn;hyan@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51302081, 61575010, 61574009, 11274028, 11574014)、北京市科技新星(批准号: Z141109001814053)、北京市科委先导与优势材料创新项目(批准号: Z151100003315018, Z151100003315004, Z151100003515003)和中国科学院重点实验室开放课题(批准号: KLSMS-1404)资助的课题.
      Corresponding author: Zhang Yong-Zhe, yzzhang@bjut.edu.cn;hyan@bjut.edu.cn ; Yan Hui, yzzhang@bjut.edu.cn;hyan@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51302081, 61575010, 61574009, 11274028, 11574014), the Beijing Nova Program, China (Grant No. Z141109001814053), the Science and Technology Commission of Beijing Municipality, China (Grant Nos. Z151100003315018, Z151100003515004, Z151100003515003), and the Open Foundation of Key Laboratory of Chinese Academy of Sciences (Grant No. KLSMS-1404).
    [1]

    Chen L, Wang Q K, Shen X Q, Chen W, Huang K, Liu D M 2015 Chin. Phys. B 24 104201

    [2]

    Tian B, Kempa T J, Lieber C M 2009 Chem. Soc. Rev. 38 16

    [3]

    Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [4]

    Martinson A B F, Elam J W, Hupp J T, Pellin M J 2007 Nano Lett. 7 2183

    [5]

    Green M A 2004 Sol. Energy 76 3

    [6]

    Jeong S, McGehee M D, Cui Y 2013 Nat. Commun. 4 2950

    [7]

    Stelzner T, Pietsch M, Andra G, Falk F, Ose E, Christiansen S 2008 Nanotechnology 19 295203

    [8]

    Wang K X, Yu Z, Liu, Cui Y V, Fan S 2012 Nano Lett. 12 1616

    [9]

    Yu Z, Raman A, Fan S 2010 PNAS 107 17491

    [10]

    Park B, Kim M, Lee Y 2011 Sol. Energy Mater. Sol. Cells 95 1141

    [11]

    Garnett E, Yang P D 2010 Nano Lett. 10 1082

    [12]

    Hu L, Chen G 2007 Nano Lett. 7 3249

    [13]

    Sun C, Min W L, Linn N C, Jiang P, Jiang B 2007 Appl. Phys. Lett. 91 231105

    [14]

    Yang L M, Pan C Y, Lu F P, Chang C W, Feng S W, Tu L W 2015 Opt. Laser Technol. 67 72

    [15]

    Jung J Y, Guo Z Y, Jee S W, Um H D, Park K T, Hyun M S, Yang J M, Lee J H 2010 Nanotechnology 21 445303

    [16]

    Hao J, Lu N, Xu H, Wang W, Gao L, Chi L 2009 Chem. Mater. 21 1802

    [17]

    Kim J, Inns D, Fogel K, Sadana D 2010 Sol. Energy Mater. Sol. Cells 94 2091

    [18]

    Peng K, Xu Y, Wu Y, Yan Y, Lee S T, Zhu J 2005 Small 1 1062

    [19]

    Kayes B M, Atwater H A, Lewis N S 2005 J. Appl. Phys. 97 114302

    [20]

    Palik E D 1985 Handbook of Optical Constants of Solids (Ed. 2) (San Digeo: Academic Press) pp519-529

  • [1]

    Chen L, Wang Q K, Shen X Q, Chen W, Huang K, Liu D M 2015 Chin. Phys. B 24 104201

    [2]

    Tian B, Kempa T J, Lieber C M 2009 Chem. Soc. Rev. 38 16

    [3]

    Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202

    [4]

    Martinson A B F, Elam J W, Hupp J T, Pellin M J 2007 Nano Lett. 7 2183

    [5]

    Green M A 2004 Sol. Energy 76 3

    [6]

    Jeong S, McGehee M D, Cui Y 2013 Nat. Commun. 4 2950

    [7]

    Stelzner T, Pietsch M, Andra G, Falk F, Ose E, Christiansen S 2008 Nanotechnology 19 295203

    [8]

    Wang K X, Yu Z, Liu, Cui Y V, Fan S 2012 Nano Lett. 12 1616

    [9]

    Yu Z, Raman A, Fan S 2010 PNAS 107 17491

    [10]

    Park B, Kim M, Lee Y 2011 Sol. Energy Mater. Sol. Cells 95 1141

    [11]

    Garnett E, Yang P D 2010 Nano Lett. 10 1082

    [12]

    Hu L, Chen G 2007 Nano Lett. 7 3249

    [13]

    Sun C, Min W L, Linn N C, Jiang P, Jiang B 2007 Appl. Phys. Lett. 91 231105

    [14]

    Yang L M, Pan C Y, Lu F P, Chang C W, Feng S W, Tu L W 2015 Opt. Laser Technol. 67 72

    [15]

    Jung J Y, Guo Z Y, Jee S W, Um H D, Park K T, Hyun M S, Yang J M, Lee J H 2010 Nanotechnology 21 445303

    [16]

    Hao J, Lu N, Xu H, Wang W, Gao L, Chi L 2009 Chem. Mater. 21 1802

    [17]

    Kim J, Inns D, Fogel K, Sadana D 2010 Sol. Energy Mater. Sol. Cells 94 2091

    [18]

    Peng K, Xu Y, Wu Y, Yan Y, Lee S T, Zhu J 2005 Small 1 1062

    [19]

    Kayes B M, Atwater H A, Lewis N S 2005 J. Appl. Phys. 97 114302

    [20]

    Palik E D 1985 Handbook of Optical Constants of Solids (Ed. 2) (San Digeo: Academic Press) pp519-529

  • [1] 兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌. 基于光子晶体的有机太阳能电池研究进展. 物理学报, 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [2] 任程超, 周佳凯, 张博宇, 刘璋, 赵颖, 张晓丹, 侯国付. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望. 物理学报, 2021, 70(17): 178401. doi: 10.7498/aps.70.20210316
    [3] 陈亮, 张利伟, 陈永生. 无铅和少铅的有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2018, 67(2): 028801. doi: 10.7498/aps.67.20171956
    [4] 肖友鹏, 王涛, 魏秀琴, 周浪. 硅异质结太阳电池的物理机制和优化设计. 物理学报, 2017, 66(10): 108801. doi: 10.7498/aps.66.108801
    [5] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [6] 许中华, 陈卫兵, 叶玮琼, 杨伟丰. 聚合物和小分子叠层结构有机太阳电池研究. 物理学报, 2014, 63(21): 218801. doi: 10.7498/aps.63.218801
    [7] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [8] 曹宇, 张建军, 李天微, 黄振华, 马峻, 倪牮, 耿新华, 赵颖. 微晶硅锗太阳电池本征层纵向结构的优化. 物理学报, 2013, 62(3): 036102. doi: 10.7498/aps.62.036102
    [9] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [10] 梁磊, 徐琴芳, 忽满利, 孙浩, 向光华, 周利斌. 晶体硅太阳电池表面纳米线阵列减反射特性研究. 物理学报, 2013, 62(3): 037301. doi: 10.7498/aps.62.037301
    [11] 周春兰, 励旭东, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁. 氧化随机织构硅表面对单晶硅太阳电池性能的影响研究. 物理学报, 2011, 60(3): 038201. doi: 10.7498/aps.60.038201
    [12] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [13] 王慧琴, 方利广, 王一凡, 余奥列. 光子晶体晶粒尺寸和排列结构对随机激光辐射特性的影响. 物理学报, 2011, 60(1): 014203. doi: 10.7498/aps.60.014203
    [14] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [15] 王慧琴, 刘正东. 光子晶体对非晶纳米团簇辐射特性的影响. 物理学报, 2009, 58(3): 1648-1654. doi: 10.7498/aps.58.1648
    [16] 胡志华, 廖显伯, 刁宏伟, 夏朝凤, 许 玲, 曾湘波, 郝会颖, 孔光临. 非晶硅太阳电池光照J-V特性的AMPS模拟. 物理学报, 2005, 54(5): 2302-2306. doi: 10.7498/aps.54.2302
    [17] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [18] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] 胡志华, 廖显伯, 曾湘波, 徐艳月, 张世斌, 刁宏伟, 孔光临. 纳米硅(nc-Si:H )/晶体硅(c-Si)异质结太阳电池的数值模拟分析. 物理学报, 2003, 52(1): 217-224. doi: 10.7498/aps.52.217
计量
  • 文章访问数:  3996
  • PDF下载量:  398
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-08
  • 修回日期:  2016-01-18
  • 刊出日期:  2016-04-05

硅薄膜太阳电池表面纳米线阵列光学设计

    基金项目: 国家自然科学基金(批准号: 51302081, 61575010, 61574009, 11274028, 11574014)、北京市科技新星(批准号: Z141109001814053)、北京市科委先导与优势材料创新项目(批准号: Z151100003315018, Z151100003315004, Z151100003515003)和中国科学院重点实验室开放课题(批准号: KLSMS-1404)资助的课题.

摘要: 陷光结构的优化是增加硅薄膜太阳电池光吸收进而提高其效率的关键技术之一. 以硅纳米线阵列为代表的光子晶体微纳陷光结构具有突破传统陷光结构Yablonovith极限的巨大潜力. 通常硅纳米线阵列可以用作太阳电池的增透减反层、轴向p-n结、径向p-n结. 针对以上三种应用, 本文运用有限时域差分(FDTD)法系统研究了硅纳米线阵列在 300-1100 nm 波段的光学特性. 结果表明, 当硅纳米线作为太阳电池的减反层时, 周期P=300 nm, 高度H=1.5 m, 填充率(FR)为0.282条件下时, 反射率最低为7.9%. 当硅纳米线作为轴向p-n结电池时, P=500 nm, H=1.5 m, FR=0.55条件下纳米线阵列的吸收效率高达22.3%. 硅纳米线作为径向p-n结电池时, 其光吸收主要依靠纳米线, 硅纳米线P=300 nm, H=6 m, FR= 0.349 条件下其吸收效率高达32.4%, 进一步提高其高度吸收效率变化不再明显. 此外, 本文还分析了非周期性硅纳米线阵列的光学性质, 与周期性硅纳米线阵列相比, 直径随机分布和位置随机分布的硅纳米线阵列都可以使吸收效率进一步提高, 相比于周期性硅纳米线阵列, 优化后直径随机分布的硅纳米线阵列吸收效率提高了39%, 吸收效率为27.8%. 本文运用FDTD法对硅纳米线阵列的光学特性进行设计与优化, 为硅纳米线阵列在太阳电池中的应用提供了理论支持.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回