-
陷光结构的优化是增加硅薄膜太阳电池光吸收进而提高其效率的关键技术之一. 以硅纳米线阵列为代表的光子晶体微纳陷光结构具有突破传统陷光结构Yablonovith极限的巨大潜力. 通常硅纳米线阵列可以用作太阳电池的增透减反层、轴向p-n结、径向p-n结. 针对以上三种应用, 本文运用有限时域差分(FDTD)法系统研究了硅纳米线阵列在 300-1100 nm 波段的光学特性. 结果表明, 当硅纳米线作为太阳电池的减反层时, 周期P=300 nm, 高度H=1.5 m, 填充率(FR)为0.282条件下时, 反射率最低为7.9%. 当硅纳米线作为轴向p-n结电池时, P=500 nm, H=1.5 m, FR=0.55条件下纳米线阵列的吸收效率高达22.3%. 硅纳米线作为径向p-n结电池时, 其光吸收主要依靠纳米线, 硅纳米线P=300 nm, H=6 m, FR= 0.349 条件下其吸收效率高达32.4%, 进一步提高其高度吸收效率变化不再明显. 此外, 本文还分析了非周期性硅纳米线阵列的光学性质, 与周期性硅纳米线阵列相比, 直径随机分布和位置随机分布的硅纳米线阵列都可以使吸收效率进一步提高, 相比于周期性硅纳米线阵列, 优化后直径随机分布的硅纳米线阵列吸收效率提高了39%, 吸收效率为27.8%. 本文运用FDTD法对硅纳米线阵列的光学特性进行设计与优化, 为硅纳米线阵列在太阳电池中的应用提供了理论支持.Light trapping has been considered as an important strategy to increase the conversion efficiency of silicon thin film solar cell. It shows that photonic crystal with feature size comparable to the wavelength, for example, the silicon nanowire array has a great potential to exceed the conventional Yablonovitch 4n2 limit. Silicon nanowire array has been designed and constructed on silicon thin film solar cell due to its excellent optical properties. Generally, silicon nanowire array is used as the antireflection coating, axial or radial p-n junction of solar cell. Different applications of the silicon nanowire arrays need different optical properties. Theoretical investigations show that the optical property is strongly dependent on the structural parameters. In this work, several structural parameters including period (P), diameter (D), height (H), and filling ratio (FR) are optimized when silicon nanowire array plays different roles. Here, by using the finite difference time domain (FDTD) method, we focus on the relations between the structural parameters and the optical properties including reflection and absorption from 300 to 1100 nm. In the FDTD simulation model, the substrate material is crystal silicon film, and the silicon nanowire array is on the surface of the substrate. In this calculation, the top and the bottom of the unit cell are air with perfectly matched layers, and with periodic boundary conditions at the side walls. When the silicon nanowire array is used as the antireflection coating, the silicon nanowire array shows a lowest reflection (7.9%) with H=1.5 m, P=300 nm, and FR=0.282. When silicon nanowire array acts as axial p-n junction solar cell (the p-n junction is formed by substrate and nanowire array), the absorption efficiency reaches a maximum value of 22.3% with H=1.5 m, P=500 nm, and FR=0.55. When the silicon nanowire array acts as the radial p-n junction solar cell, the absorption efficiency could obtain a maximum value of 32.4% with H=6 m, P=300 nm, FR=0.349. In addition, the optical properties of silicon nanowire array with random diameter and position are also analyzed here. The absorption efficiency of optimized random silicon nanowire array reaches 27.8% compared with a value of 19.9% from ordered silicon nanowire array. All of these results presented here can provide a theoretical support for the silicon thin film solar cell to increase the efficiency in the future application.
-
Keywords:
- photonic crystal /
- silicon nanowire arrays /
- finite difference time domain method /
- solar cell
[1] Chen L, Wang Q K, Shen X Q, Chen W, Huang K, Liu D M 2015 Chin. Phys. B 24 104201
[2] Tian B, Kempa T J, Lieber C M 2009 Chem. Soc. Rev. 38 16
[3] Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202
[4] Martinson A B F, Elam J W, Hupp J T, Pellin M J 2007 Nano Lett. 7 2183
[5] Green M A 2004 Sol. Energy 76 3
[6] Jeong S, McGehee M D, Cui Y 2013 Nat. Commun. 4 2950
[7] Stelzner T, Pietsch M, Andra G, Falk F, Ose E, Christiansen S 2008 Nanotechnology 19 295203
[8] Wang K X, Yu Z, Liu, Cui Y V, Fan S 2012 Nano Lett. 12 1616
[9] Yu Z, Raman A, Fan S 2010 PNAS 107 17491
[10] Park B, Kim M, Lee Y 2011 Sol. Energy Mater. Sol. Cells 95 1141
[11] Garnett E, Yang P D 2010 Nano Lett. 10 1082
[12] Hu L, Chen G 2007 Nano Lett. 7 3249
[13] Sun C, Min W L, Linn N C, Jiang P, Jiang B 2007 Appl. Phys. Lett. 91 231105
[14] Yang L M, Pan C Y, Lu F P, Chang C W, Feng S W, Tu L W 2015 Opt. Laser Technol. 67 72
[15] Jung J Y, Guo Z Y, Jee S W, Um H D, Park K T, Hyun M S, Yang J M, Lee J H 2010 Nanotechnology 21 445303
[16] Hao J, Lu N, Xu H, Wang W, Gao L, Chi L 2009 Chem. Mater. 21 1802
[17] Kim J, Inns D, Fogel K, Sadana D 2010 Sol. Energy Mater. Sol. Cells 94 2091
[18] Peng K, Xu Y, Wu Y, Yan Y, Lee S T, Zhu J 2005 Small 1 1062
[19] Kayes B M, Atwater H A, Lewis N S 2005 J. Appl. Phys. 97 114302
[20] Palik E D 1985 Handbook of Optical Constants of Solids (Ed. 2) (San Digeo: Academic Press) pp519-529
-
[1] Chen L, Wang Q K, Shen X Q, Chen W, Huang K, Liu D M 2015 Chin. Phys. B 24 104201
[2] Tian B, Kempa T J, Lieber C M 2009 Chem. Soc. Rev. 38 16
[3] Chen F X, Wang L S, Xu W Y 2013 Chin. Phys. B 22 045202
[4] Martinson A B F, Elam J W, Hupp J T, Pellin M J 2007 Nano Lett. 7 2183
[5] Green M A 2004 Sol. Energy 76 3
[6] Jeong S, McGehee M D, Cui Y 2013 Nat. Commun. 4 2950
[7] Stelzner T, Pietsch M, Andra G, Falk F, Ose E, Christiansen S 2008 Nanotechnology 19 295203
[8] Wang K X, Yu Z, Liu, Cui Y V, Fan S 2012 Nano Lett. 12 1616
[9] Yu Z, Raman A, Fan S 2010 PNAS 107 17491
[10] Park B, Kim M, Lee Y 2011 Sol. Energy Mater. Sol. Cells 95 1141
[11] Garnett E, Yang P D 2010 Nano Lett. 10 1082
[12] Hu L, Chen G 2007 Nano Lett. 7 3249
[13] Sun C, Min W L, Linn N C, Jiang P, Jiang B 2007 Appl. Phys. Lett. 91 231105
[14] Yang L M, Pan C Y, Lu F P, Chang C W, Feng S W, Tu L W 2015 Opt. Laser Technol. 67 72
[15] Jung J Y, Guo Z Y, Jee S W, Um H D, Park K T, Hyun M S, Yang J M, Lee J H 2010 Nanotechnology 21 445303
[16] Hao J, Lu N, Xu H, Wang W, Gao L, Chi L 2009 Chem. Mater. 21 1802
[17] Kim J, Inns D, Fogel K, Sadana D 2010 Sol. Energy Mater. Sol. Cells 94 2091
[18] Peng K, Xu Y, Wu Y, Yan Y, Lee S T, Zhu J 2005 Small 1 1062
[19] Kayes B M, Atwater H A, Lewis N S 2005 J. Appl. Phys. 97 114302
[20] Palik E D 1985 Handbook of Optical Constants of Solids (Ed. 2) (San Digeo: Academic Press) pp519-529
计量
- 文章访问数: 7366
- PDF下载量: 428
- 被引次数: 0