搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化随机织构硅表面对单晶硅太阳电池性能的影响研究

周春兰 励旭东 王文静 赵雷 李海玲 刁宏伟 曹晓宁

引用本文:
Citation:

氧化随机织构硅表面对单晶硅太阳电池性能的影响研究

周春兰, 励旭东, 王文静, 赵雷, 李海玲, 刁宏伟, 曹晓宁

The effect of oxidation randomly textured up-pyramid on the silicon solar cell

Zhou Chun-Lan, Li Xu-Dong, Wang Wen-Jing, Zhao Lei, Li Hai-Ling, Diao Hong-Wei, Cao Xiao-Ning
PDF
导出引用
  • 热氧化生长的SiO\-2 薄膜经常在高效单晶硅太阳电池中被用作扩散掩膜,化学镀掩膜,钝化层或者基本的减反射层.在这些高效太阳电池中,经常使用碱性溶液对单晶硅表面进行处理,得到随机分布的正金字塔结构的织绒表面,减少表面的光反射.表面氧化后的正金字塔太阳电池暗反向电流-电压呈现"软击穿"现象,并联电阻明显下降.研究结果表明引起这些现象的原因在于氧化正金字塔表面会导致在体内形成位错型缺陷,这些缺陷能够贯穿整个pn 结,导致太阳电池的并联电阻下降,同时载流子在位错型缺陷在能隙中引入的能级处发生复合,导致空间电荷区
    Thermally grown silicon dioxide is commonly used in high-efficiency monocrystalline silicon solar cell designs as a diffusion mask, electroless plating mask, passivation layer and rudimentary anti-reflection coating. These high efficiency device designs also utilize upright random textured up-pyramids etched by alkalinous solution to minimize front surface reflection. The silicon solar cells passivated with thermal SiO2/plasma SiN stacks have the evident character: the dark reverse current-voltage curve presents "soft breakdown", and the shunt resistance is lower than that of silicon solar cells passivated with the plasma SiN. The study shows that the cause of monocrystalline silicon solar cell performance degradation is the dislocation induced by the thermal growth of silicon dioxide on textured wafers. The performance of thermal SiO2/plasma SiN stack passivated silicon solar cells has evident improvement when a 2-min isotropic etching was applied after surface texturing to round off the pyramids.
    • 基金项目: 国家高技术研究发展计划(批准号:2007AA05Z437 )以及中国科学院知识创新工程重要方向项目(批准号:KGCX2-YW-382 )资助的课题.
    [1]

    Green M A, Chong C M, Zhang F, Sproul A, Zolper J, Wenham S R 1988 Conference Record of the 20th IEEE Photovoltaics Specialists Conference p.411

    [2]

    Schultz O, Glunz S W, Goldschmidt J C, Lautenschlager H, Leimenstoll A, Schneiderlochner E, Willeke G P 2004 Prog. Photovolt: Res. Appl. 12 553

    [3]

    Hu S M 1991 J. Appl. Phys. 70 R53

    [4]

    Fahey P M, Mader S R, Stiffler S R, Mohler R L, Mils J D, Slinkman J A 1992 IBM J. Develop 36 158

    [5]

    Cousins P J, Cotter J E 2006 Solar Energy Materials & Solar Cells 90 228

    [6]

    Breitenstein O, Bauer J, Trupke T, Bardos R A 2008Prog. Photovolt: Res. Appl. 16 325

    [7]

    Jiun H G, Peter J C, Jeffrey E C 2006 Prog. Photovolt: Res. Appl.14 95

    [8]

    Vishnu G, Sudha G 2004 IEEE Transactions on Electron Devices 51 1078

    [9]

    Lal R, Sharan R 1986 Solid-State Electronics 29 1015

    [10]

    Zhou C L, Cao X N, Wang W J, Zhao L, Li HL,Diao H W 2010 Acta Phys. Sin. 59 598 (in Chinese) [周春兰、曹晓宁、王文静、赵 雷、李海玲、刁宏伟 2010 物理学报59 598)]

    [11]

    Hayoung P, Joon S L, Soonwoo K, Sewang Y, Donghwan K 2009 Current Applied Physics 9 1310

    [12]

    Hayoung P, Joon S L, Soonwoo K, Sewang Y, Donghwan K 2010 Current Applied Physics 10 113

    [13]

    Kurtz A D, Kulin S A, Averbach B L 1956 Phys. Rev. 101 1285

    [14]

    Nabarro F R N 1952 Adv. Phys. 1 284

    [15]

    Mathews J W1979Dislocation in Solids, ed. Nabarro F R N(North-Holland, Amsterdam)

    [16]

    Breitenstein O, Altermatt P 2006 Conference Record of the 2006 IEEE 4th World Conference 1 879

    [17]

    Breitenstein O, Bauer J, Lotnyk A, Wagner J M 2009 Superlattices and Microstructures 45 182

  • [1]

    Green M A, Chong C M, Zhang F, Sproul A, Zolper J, Wenham S R 1988 Conference Record of the 20th IEEE Photovoltaics Specialists Conference p.411

    [2]

    Schultz O, Glunz S W, Goldschmidt J C, Lautenschlager H, Leimenstoll A, Schneiderlochner E, Willeke G P 2004 Prog. Photovolt: Res. Appl. 12 553

    [3]

    Hu S M 1991 J. Appl. Phys. 70 R53

    [4]

    Fahey P M, Mader S R, Stiffler S R, Mohler R L, Mils J D, Slinkman J A 1992 IBM J. Develop 36 158

    [5]

    Cousins P J, Cotter J E 2006 Solar Energy Materials & Solar Cells 90 228

    [6]

    Breitenstein O, Bauer J, Trupke T, Bardos R A 2008Prog. Photovolt: Res. Appl. 16 325

    [7]

    Jiun H G, Peter J C, Jeffrey E C 2006 Prog. Photovolt: Res. Appl.14 95

    [8]

    Vishnu G, Sudha G 2004 IEEE Transactions on Electron Devices 51 1078

    [9]

    Lal R, Sharan R 1986 Solid-State Electronics 29 1015

    [10]

    Zhou C L, Cao X N, Wang W J, Zhao L, Li HL,Diao H W 2010 Acta Phys. Sin. 59 598 (in Chinese) [周春兰、曹晓宁、王文静、赵 雷、李海玲、刁宏伟 2010 物理学报59 598)]

    [11]

    Hayoung P, Joon S L, Soonwoo K, Sewang Y, Donghwan K 2009 Current Applied Physics 9 1310

    [12]

    Hayoung P, Joon S L, Soonwoo K, Sewang Y, Donghwan K 2010 Current Applied Physics 10 113

    [13]

    Kurtz A D, Kulin S A, Averbach B L 1956 Phys. Rev. 101 1285

    [14]

    Nabarro F R N 1952 Adv. Phys. 1 284

    [15]

    Mathews J W1979Dislocation in Solids, ed. Nabarro F R N(North-Holland, Amsterdam)

    [16]

    Breitenstein O, Altermatt P 2006 Conference Record of the 2006 IEEE 4th World Conference 1 879

    [17]

    Breitenstein O, Bauer J, Lotnyk A, Wagner J M 2009 Superlattices and Microstructures 45 182

计量
  • 文章访问数:  4790
  • PDF下载量:  986
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-30
  • 修回日期:  2010-06-20
  • 刊出日期:  2011-03-15

氧化随机织构硅表面对单晶硅太阳电池性能的影响研究

  • 1. (1)北京市太阳能研究所有限公司,北京 100083; (2)中国科学院电工研究所,中国科学院太阳能热利用及光伏系统重点实验室,北京 100190
    基金项目: 

    国家高技术研究发展计划(批准号:2007AA05Z437 )以及中国科学院知识创新工程重要方向项目(批准号:KGCX2-YW-382 )资助的课题.

摘要: 热氧化生长的SiO\-2 薄膜经常在高效单晶硅太阳电池中被用作扩散掩膜,化学镀掩膜,钝化层或者基本的减反射层.在这些高效太阳电池中,经常使用碱性溶液对单晶硅表面进行处理,得到随机分布的正金字塔结构的织绒表面,减少表面的光反射.表面氧化后的正金字塔太阳电池暗反向电流-电压呈现"软击穿"现象,并联电阻明显下降.研究结果表明引起这些现象的原因在于氧化正金字塔表面会导致在体内形成位错型缺陷,这些缺陷能够贯穿整个pn 结,导致太阳电池的并联电阻下降,同时载流子在位错型缺陷在能隙中引入的能级处发生复合,导致空间电荷区

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回