搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温超薄高效Cu(In, Ga)Se2太阳电池的实现

韩安军 孙云 李志国 李博研 何静靖 张毅 刘玮

引用本文:
Citation:

低温超薄高效Cu(In, Ga)Se2太阳电池的实现

韩安军, 孙云, 李志国, 李博研, 何静靖, 张毅, 刘玮

The high efficiency sub-micrometer Cu(In, Ga)Se2 solar cell prepared on low temperature

Han An-Jun, Sun Yun, Li Zhi-Guo, Li Bo-Yan, He Jing-Jing, Zhang Yi, Liu Wei
PDF
导出引用
  • 衬底温度保持恒定, 在Se气氛下按照一定的元素配比顺序蒸发Ga, In, Cu制备厚度约为0.7 μrm的Cu(In0.7Ga0.3)Se2 (CIGS)薄膜. 利用X射线衍射仪分析薄膜的晶体结构及物相组成, 扫描电子显微镜表征薄膜形貌及结晶质量, 二次离子质谱仪测试薄膜内部元素分布, 拉曼散射谱 分析薄膜表面构成, 带积分球附件的分光光度计测量薄膜光学性能. 研究发现在Ga-In-Se预制层内, In主要通过晶界扩散引起Ga/(Ga+In)分布均匀化. 衬底温度高于450 ℃时, 薄膜呈现单一的Cu(In0.7Ga0.3)Se2相; 低于400℃, 薄膜存在严重的Ga的两相分离现象, 且高含Ga相主要存在于薄膜的上下表面; 低于300 ℃, 薄膜结晶质量进一步恶化. 薄膜表层的高含Ga相Cu(In0.5Ga0.5)Se2以小晶粒形式均匀分布于薄膜表面, 增加了薄膜的粗糙度, 在电池内形成陷光结构, 提高了超薄电池对光的吸收. 加上带隙值较小的低含Ga相的存在, 使电池短路电流密度得到较大改善. 衬底温度在550 ℃–350 ℃变化时, 短路电流密度JSC是影响超薄电池转换效率的主要因素; 而衬底温度Tsub低于300 ℃时, 开路电压VOC和填充因子FF降低已成为电池性能减退的主要原因. Tsub为350 ℃时制备的0.7 μm左右的超薄CIGS电池转换效率达到了10.3%.
    In the presence of Se, Cu(In0.7Ga0.3)Se2 (CIGS) thin films are prepared by the sequential evaporation of Ga, In, Cu at a constant substrate temperature between 250 ℃ and 550 ℃ on the Mo/soda lime glass substrates. The thickness values of films are about 0.7 μm. The structural and phase properties of CIGS films are studied by an X-ray diffractometer, the morphology and crystalline quality are characterized by a scanning electron microscope, the depth profiles of elements are measured by a secondary ion mass spectroscopy, the surface compositions are analyzed by a Raman spectrometer, and the optical properties of CIGS films are measured by a spectrophotometer with an integrating sphere. It is found that the films prepared at substrate temperature above 450 ℃ each exhibite a single Cu(In0.7Ga0.3)Se2 phase, and the homogenization of Ga/(Ga+In) distribution in the Ga-In-Se precursor is achieved by the diffusion of In atoms through grain boundaries. As the substrate temperature is less than 400 ℃, a serious Ga phase separation is observed and the high content of Ga phase mainly exists at the top and bottom of CIGS films. Below 300 ℃, a serious deterioration of crystalline quality is found, and Ga atoms cannot effectively enter into the CIS lattice position to form CIGS. The films prepared at the substrate temperature less than 400 ℃ are covered with lots of Cu(In0.5Ga0.5)Se2 small grains, which results in the enhancement of the surface roughness and the formation of a light trapping structure at the interface of Cd/CIGS. Thus, the light absorption of solar cell is improved. In addition, the smaller gap value of the low Ga content phase also facilitats the light absorption, then the short-circuit current density of thinned solar cell is greatly improved. The analysis shows that the short-circuit current density is the main factor affecting the conversion efficiency of thinned solar cell prepared between 550 ℃-350 ℃. However, when the substrate temperature is below 350 ℃, the reduction of VOC and FF has become the main reason for the deterioration of solar cell. In conclusion, the efficiency of solar cell with 0.7 μm CIGS absorber prepared at substrate temperature of 350 ℃ reaches 10.3% due to the improvement of short-circuit current density.
    • 基金项目: 国家高技术研究发展计划(批准号:2004AA513020)、国家自然科学基金(批准号:60906033,50902074,90922037,61076061)和天津市自然科学基金(批准号:11JCYBJC01200)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2004AA513020), the National Natural Science Foundation of China (Grant Nos. 60906033, 50902074, 90922037, 61076061), and the Natural Science Foundation of Tianjin, China (Grant No. 11JCYBJC01200).
    [1]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt: Res. Appl. 19 894

    [2]

    Han S H, Hermann A M, Hasoon F S, Al-Thani H A, Levi D H 2004 Appl. Phys. Lett. 85 576

    [3]

    Powalla M, Dimmler B 2000 Thin Solid Films 361-362 540

    [4]

    Han A J, Zhang Y, Song W, Li B Y, Liu W, Sun Y 2012 Semicond. Sci. Technol. 27 035022

    [5]

    Gloeckler M, Sites J R 2005 J. Appl. Phys. 98 103703

    [6]

    Edoff M, Schleussner S, Wallin E, Lundberg O 2011 Thin Solid Films 519 7530

    [7]

    Zhang L, Liu F F, Li F Y, He Q, Li B Z, Li C J 2012 Sol. Energy Mater. Sol. Cells 99 356

    [8]

    Caballero R, Kaufmann C A, Eisenbarth T, Cancela M, Hesse R, Unold T, Eicke A, Klenk R, Schock H W 2009 Thin Solid Films 517 2187

    [9]

    Zhang L, He Q, Jiang W L, Li C J, Sun Y 2008 Chin. Phys. Lett. 25 734

    [10]

    Schöldström J, Kessler J, Edoff M 2005 Thin Solid Films 480-481 61

    [11]

    Ao J P, Yang L, Yan L, Sun G Z, He Q, Zhou Z Q, Sun Y 2009 Acta Phys. Sin. 58 1870 (in Chinese) [敖建平, 杨亮, 闫礼, 孙国忠, 何青, 周志强, 孙 云2009物理学报 58 1870]

    [12]

    Djessas K, Yapi S, Massé G, Ibannain M, Gauffier J L 2004 J. Appl. Phys. 95 4111

    [13]

    Gabor A M, Tuttle J R, Bode M H, Franz A, Tennant A L, Contreras M A, Noufi R, Jensen D G, Hermann A M 1996 Sol. Energy Mater. Sol. Cells 41/42 247

    [14]

    Schleussner S M, Törndah T, Linnarsson M, Zimmermann U, Wätjen T, Edoff M 2012 Prog. Photovolt: Res. Appl. 20 284

    [15]

    Otte K, Lippold G, Hirsch D, Schindler A, Bigl F 2000 Thin Solid Films 361-362 498

    [16]

    Roy S, Guha P, Kundu S N, Hanzawa H, Chaudhuri S, Pal A K 2002 Mater. Chem. Phys. 73 24

    [17]

    Zhang Y W, Bi D W, Gong X N, Bian H, Wan L, Tang D S 2011 Sci. China: Phys. Mech. Astron. 41 845 (in Chinese) [张有为, 毕大炜, 公祥南, 边惠, 万里, 唐东升 2011中国科学: 物理学 力学 天文学 41 845]

    [18]

    Han A J, Zhang Y, Li B Y, Liu W, Sun Y 2012 Appl. Surf. Sci. 258 9747

    [19]

    Li W, Sun Y, Liu W, Li F Y, Zhou L 2006 Chin. Phys. 15 878

    [20]

    Han A J, Zhang J J, Li L N, Zhang H, Liu C C, Geng X H, Zhao Y 2011 Acta Energiae Sol. Sin. 5 698 (in Chinese) [韩安军, 张建军, 李林娜, 张洪, 刘彩池, 耿新华, 赵颖 2011太阳能学报 5 698]

  • [1]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt: Res. Appl. 19 894

    [2]

    Han S H, Hermann A M, Hasoon F S, Al-Thani H A, Levi D H 2004 Appl. Phys. Lett. 85 576

    [3]

    Powalla M, Dimmler B 2000 Thin Solid Films 361-362 540

    [4]

    Han A J, Zhang Y, Song W, Li B Y, Liu W, Sun Y 2012 Semicond. Sci. Technol. 27 035022

    [5]

    Gloeckler M, Sites J R 2005 J. Appl. Phys. 98 103703

    [6]

    Edoff M, Schleussner S, Wallin E, Lundberg O 2011 Thin Solid Films 519 7530

    [7]

    Zhang L, Liu F F, Li F Y, He Q, Li B Z, Li C J 2012 Sol. Energy Mater. Sol. Cells 99 356

    [8]

    Caballero R, Kaufmann C A, Eisenbarth T, Cancela M, Hesse R, Unold T, Eicke A, Klenk R, Schock H W 2009 Thin Solid Films 517 2187

    [9]

    Zhang L, He Q, Jiang W L, Li C J, Sun Y 2008 Chin. Phys. Lett. 25 734

    [10]

    Schöldström J, Kessler J, Edoff M 2005 Thin Solid Films 480-481 61

    [11]

    Ao J P, Yang L, Yan L, Sun G Z, He Q, Zhou Z Q, Sun Y 2009 Acta Phys. Sin. 58 1870 (in Chinese) [敖建平, 杨亮, 闫礼, 孙国忠, 何青, 周志强, 孙 云2009物理学报 58 1870]

    [12]

    Djessas K, Yapi S, Massé G, Ibannain M, Gauffier J L 2004 J. Appl. Phys. 95 4111

    [13]

    Gabor A M, Tuttle J R, Bode M H, Franz A, Tennant A L, Contreras M A, Noufi R, Jensen D G, Hermann A M 1996 Sol. Energy Mater. Sol. Cells 41/42 247

    [14]

    Schleussner S M, Törndah T, Linnarsson M, Zimmermann U, Wätjen T, Edoff M 2012 Prog. Photovolt: Res. Appl. 20 284

    [15]

    Otte K, Lippold G, Hirsch D, Schindler A, Bigl F 2000 Thin Solid Films 361-362 498

    [16]

    Roy S, Guha P, Kundu S N, Hanzawa H, Chaudhuri S, Pal A K 2002 Mater. Chem. Phys. 73 24

    [17]

    Zhang Y W, Bi D W, Gong X N, Bian H, Wan L, Tang D S 2011 Sci. China: Phys. Mech. Astron. 41 845 (in Chinese) [张有为, 毕大炜, 公祥南, 边惠, 万里, 唐东升 2011中国科学: 物理学 力学 天文学 41 845]

    [18]

    Han A J, Zhang Y, Li B Y, Liu W, Sun Y 2012 Appl. Surf. Sci. 258 9747

    [19]

    Li W, Sun Y, Liu W, Li F Y, Zhou L 2006 Chin. Phys. 15 878

    [20]

    Han A J, Zhang J J, Li L N, Zhang H, Liu C C, Geng X H, Zhao Y 2011 Acta Energiae Sol. Sin. 5 698 (in Chinese) [韩安军, 张建军, 李林娜, 张洪, 刘彩池, 耿新华, 赵颖 2011太阳能学报 5 698]

  • [1] 王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华. 铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能. 物理学报, 2023, 72(13): 138801. doi: 10.7498/aps.72.20230357
    [2] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [3] 陈新亮, 陈莉, 周忠信, 赵颖, 张晓丹. Cu2O/ZnO氧化物异质结太阳电池的研究进展. 物理学报, 2018, 67(11): 118401. doi: 10.7498/aps.67.20172037
    [4] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [5] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [6] 白立沙, 李天天, 刘伯飞, 黄茜, 李宝璋, 张德坤, 孙建, 魏长春, 赵颖, 张晓丹. 超薄高速率单结微晶硅薄膜电池及其叠层电池. 物理学报, 2015, 64(22): 228801. doi: 10.7498/aps.64.228801
    [7] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [8] 张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华. 衬底温度对反应磁控溅射W掺杂ZnO薄膜的微观结构及光电性能的影响. 物理学报, 2012, 61(23): 238101. doi: 10.7498/aps.61.238101
    [9] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究. 物理学报, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [10] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [11] 梁林云, 戴松元, 胡林华, 戴俊, 刘伟庆. TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究. 物理学报, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [12] 於黄忠, 彭俊彪, 刘金成. MEH-PPV与TiO2共混体系太阳电池性能分析. 物理学报, 2009, 58(1): 669-673. doi: 10.7498/aps.58.669
    [13] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [14] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究. 物理学报, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [15] 杨仕娥, 文黎巍, 陈永生, 汪昌州, 谷锦华, 郜小勇, 卢景霄. 衬底温度和硼掺杂对p型氢化微晶硅薄膜结构和电学特性的影响. 物理学报, 2008, 57(8): 5176-5181. doi: 10.7498/aps.57.5176
    [16] 吴小丽, 陈长乐, 韩立安, 罗炳成, 高国棉, 朱建华. 衬底温度对PLD法生长的Mg0.05Zn0.95O薄膜结构和发光特性的影响. 物理学报, 2008, 57(6): 3735-3739. doi: 10.7498/aps.57.3735
    [17] 李 微, 敖建平, 何 青, 刘芳芳, 李凤岩, 李长健, 孙 云. 衬底对Cu(In, Ga)Se2薄膜织构的影响. 物理学报, 2007, 56(8): 5009-5012. doi: 10.7498/aps.56.5009
    [18] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
计量
  • 文章访问数:  6705
  • PDF下载量:  707
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-27
  • 修回日期:  2012-09-25
  • 刊出日期:  2013-02-05

/

返回文章
返回