搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

衬底温度对反应磁控溅射W掺杂ZnO薄膜的微观结构及光电性能的影响

张翅 陈新亮 王斐 闫聪博 黄茜 赵颖 张晓丹 耿新华

引用本文:
Citation:

衬底温度对反应磁控溅射W掺杂ZnO薄膜的微观结构及光电性能的影响

张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华

Temperature-dependant growth and properties of W-doped ZnO thin films deposited by reactive magnetron sputtering

Zhang Chi, Chen Xin-Liang, Wang Fei, Yan Cong-Bo, Huang Qian, Zhao Ying, Zhang Xiao-Dan, Geng Xin-Hua
PDF
导出引用
  • 采用直流脉冲反应磁控溅射方法生长W掺杂ZnO (WZO)透明导电氧化物薄膜并研究了衬底温度对薄膜微观结构、组分、表面形貌以及光电性能的影响. 实验结果表明, WZO薄膜具有良好的(002)晶面择优取向, 且适当的衬底温度是制备优质WZO薄膜的关键因素. 随着衬底温度升高, 薄膜表面粗糙度先增大后减小; 衬底温度较高时, 薄膜的结构致密, 结晶质量好, 电子迁移率高. 当衬底温度为325 ℃时, WZO薄膜获得最低电阻率 9.25×10-3 Ω·cm, 方块电阻为56.24 Ω/⊄, 迁移率为11.8 cm2 V-1·s-1, 其在可见光及近红外区域(400—1500 nm)范围的平均透过率达到85.7%.
    W-doped ZnO (WZO) thin films for thin film solar cells have been deposited by pulsed direct-current reactive magnetron sputtering. The microstructures, surface morphologies, optical and electrical properties of WZO thin films are investigated at different substrate temperatures. The experimental results indicate that a proper substrate temperature is the key factor for fabricating high-quality WZO thin films. The surface roughness of WZO thin films increases firstly from 15.65 nm to 37.60 nm, and then decreases from 37.60 nm to 11.07 nm with the increase of substrate temperature. Higher Hall mobility deposited at the higher temperatures is attributed to the compact structure and good crystallization quality. The WZO thin film prepared at the temperature of 325 ℃ presents excellent optical and electrical properties with an average transmittance of 85.7% in the wavelength range from 400 nm to 1500 nm, a low resistivity of 9.25× 10-3 Ω·cm, a sheet resistance of 56.24 Ω /sq and a high Hall mobility of 11.8 cm2·V-1·s-1.
    • 基金项目: 国家重点基础研究计划(批准号: 2011CBA00705, 2011CBA00706, 2011CBA00707)、 国家高技术研究发展计划(批准号: 2009A A050602)、 科技部国际合作项目(批准号: 2009DFA62580)、 天津市应用基础及前沿技术研究计划(批准号: 09JCYBJC06900) 和中央高校基本科研业务费专项资金项目(批准号: 65010341)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00705, 2011CBA00706, 2011CBA00707), the National High Technology Research and Development Program of China (Grant No. 2009AA050602), International Cooperation Project between China-Greece Government (Grant No. 2009DFA62580), Tianjin Applied Basic Research Project and Cutting-edge Technology Research Plan, China (Grant No. 09JCYBJC06900), and the Fundamental Research Funds for the Central Universities, China (Grant No. 65010341).
    [1]

    Kim H, Horwitz J S, Kim W H, Mäkinen A J, Kafafi Z H, Chrisey D B 2002 Thin Solid Films 420-421 539

    [2]

    Ellmer K 2001 J. Phys. D: Appl. Phys. 34 3097

    [3]

    Meier J, Spitznagel J, Kroll U, Bucher C, Faÿ S, Moriarty T, Shah A 2004 Thin Solid Films 451452 518

    [4]

    Gordon R G 2000 MRS Bull. 25 52

    [5]

    Meng Y, Yang X L, Chen H X, Shen J, Jiang Y M, Zhang Z J, Hua Z Y 2001 Thin Solid Films 394 218

    [6]

    Calnan S, Tiwari A N 2010 Thin Solid Films 518 1839

    [7]

    Parthiban S, Elangovan E, Ramamurthi K, Martins R , Fortunato E 2010 Sol. Energy Mater. Sol. Cells 94 406

    [8]

    Yamada N, Tatejima T, Ishizaki H, Nakada T 2006 Jpn. J. Appl. Phys. 45 1179

    [9]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Appl. Surf. Sci. 254 1661

    [10]

    Newhouse P F, Park C H, Keszler D A, Tate J, Nyholm P S 2005 Appl. Phys. Lett. 87 112108

    [11]

    Ren S R 2010 M. S. Dissertation (Tianjin: Hebei University of Technology) (in Chinese) [任世荣 2010 硕士学位论文 (天津:河北工业大学)]

    [12]

    Xiu X W, Cao Y P, Pang Z Y, Han S H 2009 J. Mater. Sci. Technol. 25 785

    [13]

    Lin Y C, Wang B L, Yen W T, Ha C T, Peng C 2010 Thin Solid Films 518 4928

    [14]

    Lin Y C, Wang B L, Yen W T, Shen C H 2011 Thin Solid Films 519 5571

    [15]

    Kuo C C, Liu C C, He S C, Chang J T, He J L 2011 Vacuum 85 961

    [16]

    Ngom B D, Mpahane T, Manyala N, Nemraoui O, Buttner U, Kana J B, Fasasi A Y, Maaza M, Beye A C 2009 Appl. Surf. Sci. 255 4153

    [17]

    Ngom B D, Sakho O, Manyala N, Kana J B, Mlungisi N, Guerbous L, Fasasi A Y, Maaza M, Beye A C 2009 Appl. Surf. Sci. 255 7314

    [18]

    Ngom B D, Chaker M, Manyala N, Lo B, Maaza M, Beye A C 2011 Appl. Surf. Sci. 257 6226

    [19]

    Zhang H F, Liu H F, Lei C X, Yuan C K, Zhou A P 2010 Vacuum 85 184

    [20]

    Zhang H F, Yang S G, Liu H F, Yuan C K 2011 Journal of Semiconductors 32 31

    [21]

    Wu C G 2010 M. S. Dissertation (Shanghai: Fudan University) (in Chinese) [吴臣国 2010 硕士学位论文 (上海:复旦大学)]

    [22]

    Chen X L, Geng X H, Xue J M, Zhang D K, Hou G F, Zhao Y 2006 J. Cryst. Growth 296 43

    [23]

    Meier J, Spitznagel J, Faÿ S, Bucher C, Graf U, Kroll U, Dubail S, Shah A 2002 Proceedings of the 29th IEEE Photovoltaic Specialists Conference New Orleans, USA, 2002 p1118

    [24]

    Li L N 2010 Ph. D. Dissertation (Tianjin: Nakai University) (in Chinese) [李林娜 2010 博士学位论文(天津:南开大学)]

    [25]

    Kim K K, Song J H, Jung H J, Choi W K, Park S J, Song J H 2000 J. Appl. Phys. 87 3573

    [26]

    Wang J Z, Li M C, Sallet V, Rego A, Martins R, Fortunato E 2011 Infrared and Laser Engineering 40 1490 (in Chinese) [王金忠, 李美成, Sallet V, Rego A, Martins R, Fortunato E 2011 红外与激光工程 40 1490]

    [27]

    Kluth O, Schope G, Hupkes J, Agashe C, Müller J, Rech B 2003 Thin Solid Films 442 80

    [28]

    Meng Y 2001 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [孟杨 2001 博士学位论文 (上海:复旦大学)]

  • [1]

    Kim H, Horwitz J S, Kim W H, Mäkinen A J, Kafafi Z H, Chrisey D B 2002 Thin Solid Films 420-421 539

    [2]

    Ellmer K 2001 J. Phys. D: Appl. Phys. 34 3097

    [3]

    Meier J, Spitznagel J, Kroll U, Bucher C, Faÿ S, Moriarty T, Shah A 2004 Thin Solid Films 451452 518

    [4]

    Gordon R G 2000 MRS Bull. 25 52

    [5]

    Meng Y, Yang X L, Chen H X, Shen J, Jiang Y M, Zhang Z J, Hua Z Y 2001 Thin Solid Films 394 218

    [6]

    Calnan S, Tiwari A N 2010 Thin Solid Films 518 1839

    [7]

    Parthiban S, Elangovan E, Ramamurthi K, Martins R , Fortunato E 2010 Sol. Energy Mater. Sol. Cells 94 406

    [8]

    Yamada N, Tatejima T, Ishizaki H, Nakada T 2006 Jpn. J. Appl. Phys. 45 1179

    [9]

    Gupta R K, Ghosh K, Mishra S R, Kahol P K 2008 Appl. Surf. Sci. 254 1661

    [10]

    Newhouse P F, Park C H, Keszler D A, Tate J, Nyholm P S 2005 Appl. Phys. Lett. 87 112108

    [11]

    Ren S R 2010 M. S. Dissertation (Tianjin: Hebei University of Technology) (in Chinese) [任世荣 2010 硕士学位论文 (天津:河北工业大学)]

    [12]

    Xiu X W, Cao Y P, Pang Z Y, Han S H 2009 J. Mater. Sci. Technol. 25 785

    [13]

    Lin Y C, Wang B L, Yen W T, Ha C T, Peng C 2010 Thin Solid Films 518 4928

    [14]

    Lin Y C, Wang B L, Yen W T, Shen C H 2011 Thin Solid Films 519 5571

    [15]

    Kuo C C, Liu C C, He S C, Chang J T, He J L 2011 Vacuum 85 961

    [16]

    Ngom B D, Mpahane T, Manyala N, Nemraoui O, Buttner U, Kana J B, Fasasi A Y, Maaza M, Beye A C 2009 Appl. Surf. Sci. 255 4153

    [17]

    Ngom B D, Sakho O, Manyala N, Kana J B, Mlungisi N, Guerbous L, Fasasi A Y, Maaza M, Beye A C 2009 Appl. Surf. Sci. 255 7314

    [18]

    Ngom B D, Chaker M, Manyala N, Lo B, Maaza M, Beye A C 2011 Appl. Surf. Sci. 257 6226

    [19]

    Zhang H F, Liu H F, Lei C X, Yuan C K, Zhou A P 2010 Vacuum 85 184

    [20]

    Zhang H F, Yang S G, Liu H F, Yuan C K 2011 Journal of Semiconductors 32 31

    [21]

    Wu C G 2010 M. S. Dissertation (Shanghai: Fudan University) (in Chinese) [吴臣国 2010 硕士学位论文 (上海:复旦大学)]

    [22]

    Chen X L, Geng X H, Xue J M, Zhang D K, Hou G F, Zhao Y 2006 J. Cryst. Growth 296 43

    [23]

    Meier J, Spitznagel J, Faÿ S, Bucher C, Graf U, Kroll U, Dubail S, Shah A 2002 Proceedings of the 29th IEEE Photovoltaic Specialists Conference New Orleans, USA, 2002 p1118

    [24]

    Li L N 2010 Ph. D. Dissertation (Tianjin: Nakai University) (in Chinese) [李林娜 2010 博士学位论文(天津:南开大学)]

    [25]

    Kim K K, Song J H, Jung H J, Choi W K, Park S J, Song J H 2000 J. Appl. Phys. 87 3573

    [26]

    Wang J Z, Li M C, Sallet V, Rego A, Martins R, Fortunato E 2011 Infrared and Laser Engineering 40 1490 (in Chinese) [王金忠, 李美成, Sallet V, Rego A, Martins R, Fortunato E 2011 红外与激光工程 40 1490]

    [27]

    Kluth O, Schope G, Hupkes J, Agashe C, Müller J, Rech B 2003 Thin Solid Films 442 80

    [28]

    Meng Y 2001 Ph. D. Dissertation (Shanghai: Fudan University) (in Chinese) [孟杨 2001 博士学位论文 (上海:复旦大学)]

  • [1] 朱慧群, 李毅, 叶伟杰, 李春波. 花状掺杂W-VO2/ZnO热致变色纳米复合薄膜研究. 物理学报, 2014, 63(23): 238101. doi: 10.7498/aps.63.238101
    [2] 佟国香, 李毅, 王锋, 黄毅泽, 方宝英, 王晓华, 朱慧群, 梁倩, 严梦, 覃源, 丁杰, 陈少娟, 陈建坤, 郑鸿柱, 袁文瑞. 磁控溅射制备W掺杂VO2/FTO复合薄膜及其性能分析. 物理学报, 2013, 62(20): 208102. doi: 10.7498/aps.62.208102
    [3] 潘佳奇, 朱承泉, 李育仁, 兰伟, 苏庆, 刘雪芹, 谢二庆. 非化学计量比靶材溅射制备Cu-Al-O薄膜的光学电学性质研究. 物理学报, 2011, 60(11): 117307. doi: 10.7498/aps.60.117307
    [4] 高立, 张建民. 带隙可调的Al,Mg掺杂ZnO薄膜的制备. 物理学报, 2009, 58(10): 7199-7203. doi: 10.7498/aps.58.7199
    [5] 吴小丽, 陈长乐, 韩立安, 罗炳成, 高国棉, 朱建华. 衬底温度对PLD法生长的Mg0.05Zn0.95O薄膜结构和发光特性的影响. 物理学报, 2008, 57(6): 3735-3739. doi: 10.7498/aps.57.3735
    [6] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能. 物理学报, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [7] 刘 明, 刘志文, 谷建峰, 秦福文, 马春雨, 张庆瑜. 蓝宝石基片的处理方法对ZnO薄膜生长行为的影响. 物理学报, 2008, 57(2): 1133-1140. doi: 10.7498/aps.57.1133
    [8] 杨仕娥, 文黎巍, 陈永生, 汪昌州, 谷锦华, 郜小勇, 卢景霄. 衬底温度和硼掺杂对p型氢化微晶硅薄膜结构和电学特性的影响. 物理学报, 2008, 57(8): 5176-5181. doi: 10.7498/aps.57.5176
    [9] 陈新亮, 薛俊明, 张德坤, 孙 建, 任慧志, 赵 颖, 耿新华. 衬底温度对MOCVD法沉积ZnO透明导电薄膜的影响. 物理学报, 2007, 56(3): 1563-1567. doi: 10.7498/aps.56.1563
    [10] 谷建峰, 刘志文, 刘 明, 付伟佳, 马春雨, 张庆瑜. Si(001)基片上反应射频磁控溅射ZnO薄膜的两步生长方法. 物理学报, 2007, 56(4): 2369-2376. doi: 10.7498/aps.56.2369
    [11] 孙成伟, 刘志文, 张庆瑜. 退火温度对ZnO薄膜结构和发光特性的影响. 物理学报, 2006, 55(1): 430-436. doi: 10.7498/aps.55.430
    [12] 赵跃智, 陈长乐, 高国棉, 杨晓光, 袁 孝, 宋宙模. Mn掺杂ZnO薄膜的结构及光学性能研究. 物理学报, 2006, 55(6): 3132-3135. doi: 10.7498/aps.55.3132
    [13] 刘志文, 谷建峰, 付伟佳, 孙成伟, 李 勇, 张庆瑜. 工作气压对磁控溅射ZnO薄膜结晶特性及生长行为的影响. 物理学报, 2006, 55(10): 5479-5486. doi: 10.7498/aps.55.5479
    [14] 刘志文, 谷建峰, 孙成伟, 张庆瑜. 磁控溅射ZnO薄膜的成核机制及表面形貌演化动力学研究. 物理学报, 2006, 55(4): 1965-1973. doi: 10.7498/aps.55.1965
    [15] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究. 物理学报, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [16] 孙成伟, 刘志文, 秦福文, 张庆瑜, 刘 琨, 吴世法. 生长温度对磁控溅射ZnO薄膜的结晶特性和光学性能的影响. 物理学报, 2006, 55(3): 1390-1397. doi: 10.7498/aps.55.1390
    [17] 李伙全, 宁兆元, 程珊华, 江美福. 射频磁控溅射沉积的ZnO薄膜的光致发光中心与漂移. 物理学报, 2004, 53(3): 867-870. doi: 10.7498/aps.53.867
    [18] 江美福, 宁兆元. 反应磁控溅射法制备的氟化类金刚石薄膜的XPS结构研究. 物理学报, 2004, 53(9): 3220-3224. doi: 10.7498/aps.53.3220
    [19] 张德恒, 王卿璞, 薛忠营. 不同衬底上的ZnO薄膜紫外光致发光. 物理学报, 2003, 52(6): 1484-1487. doi: 10.7498/aps.52.1484
    [20] 林碧霞, 傅竹西, 贾云波, 廖桂红. 非掺杂ZnO薄膜中紫外与绿色发光中心. 物理学报, 2001, 50(11): 2208-2211. doi: 10.7498/aps.50.2208
计量
  • 文章访问数:  8895
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-24
  • 修回日期:  2012-07-03
  • 刊出日期:  2012-12-05

/

返回文章
返回