搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能

王仕东 闫雅婷 王瑞英 朱志立 谷锦华

引用本文:
Citation:

铯掺杂提升反梯度结构二维(CMA)2MA8Pb9I28钙钛矿薄膜及太阳电池的性能

王仕东, 闫雅婷, 王瑞英, 朱志立, 谷锦华

Cesium doping for improving performance of inverse-graded 2D (CMA)2MA8Pb9I28 perovskite film and solar cells

Wang Shi-Dong, Yan Ya-Ting, Wang Rui-Ying, Zhu Zhi-Li, Gu Jin-Hua
PDF
HTML
导出引用
  • 相对于3D钙钛矿材料, 二维(2D)有机-无机杂化钙钛矿材料具有更好的稳定性. 然而由于载流子输运性差, 2D钙钛矿太阳电池效率较低. 为了提高2D钙钛矿太阳电池的效率, 制备了铯掺杂的具有反梯度结构的二维(CMA)2MA8Pb9I28薄膜. 研究结果发现: CsI掺杂能够改善(CMA)2MA8Pb9I28薄膜的形貌、增加晶粒尺寸、降低缺陷态密度, 并且提高了(CMA)2MA8Pb9I28钙钛矿薄膜的热稳定性. 最后, CsI掺杂浓度为10%时制备(CMA)2MA8Pb9I28钙钛矿太阳电池效率最高, 达到了14.67 %, 相对于未掺杂的电池效率(10.06%)提高了45.8%.
    Compared with three-dimensional (3D) perovskites, two-dimensional (2D) perovskites have excellent environmental stability. However, the efficiency of 2D perovskite solar cells is still lower than that of their 3D counterparts owing to the poor carrier transport. In order to improve the efficiency of 2D perovskite solar cells, the cesium (Cs) doping 2D (CMA)2MA8Pb9I28 films with an inverse gradient structure (small n quantum well (QW) located at the surface and large n QW at the bottom) are prepared. The inverse gradient QW structure has the advantages of being more moisture-resistant (small n QW protects the vulnerable large n QW from being attacked by water molecules) and favoring self-driven charge transport (type-II band alignment between different phases). The results show that the quality and thermal stability of 2D (CMA)2MA8Pb9I28 film can be effectively improved by using Cs doping. The SEM images show that the film grains become larger, and the surface is smoother and more compact with CsI content increasing. When CsI increases to 15%, the surface becomes coarse. From the XRD, it can be seen that the crystallinity of perovskite is improved with CsI doping, and it reaches saturation when CsI content increases to 10%. The PL intensity of the film with 5% CsI is higher than the others’, implying a relatively low non-radiative recombination loss and low defect state in that film. Therefore, the minority carrier average lifetime of film doped with 5% CsI is the longest. The absorption is almost unchanged when CsI is doped. The thermal stability of film can be effectively improved when CsI exceeds 10%. Considering the SEM images, crystallinity, PL intensity, light absorption and thermal stability of perovskite, the optimized CsI doped concentration is 10% in our work. Finally, the highest efficiency of (CMA)2MA8Pb9I28 perovskite solar cells doped with 10% CsI content reaches to 14.67%, with a short-circuit current density (JSC) of 23.16 mA/cm2, an open-circuit voltage (Voc) of 1.05 V and a fill factor (FF) of 60.75%. The efficiency of the undoped cells is 10.06%, which is lower than that of CsI doped cells (10%). Therefore, CsI doping is an effective method to further improve the efficiency and thermal stability of 2D perovskite solar cells.
      通信作者: 谷锦华, gujinh@zzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12274375)资助的课题.
      Corresponding author: Gu Jin-Hua, gujinh@zzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274375)
    [1]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [2]

    Stranks S D, Snaith Henry J 2015 Nat. Nanotechnol. 10 391Google Scholar

    [3]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [4]

    Kim H S, Lee C R, Im J H, et al. 2012 Sci. Rep. 2 591Google Scholar

    [5]

    Wang M, Tan S, Zhao Y, et al. 2021 Adv. Funct. Mater. 31 2007520Google Scholar

    [6]

    Ponseca C S, Savenije T J, Abdellah M, et al. 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [7]

    Brenner T M, Egger D A, Kronik L, Hodes G, Cahen D 2016 Nat. Rev. Mater. 1 15007Google Scholar

    [8]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [9]

    Zhao Y, Zhu K 2016 Chem. Soc. Rev. 45 655Google Scholar

    [10]

    Wolf S D, Holovsky J, Moon S J, et al. 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [11]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar

    [12]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505Google Scholar

    [13]

    Kim H S, Seo J Y, Park N G 2016 Chem. Sus. Chem 9 2528Google Scholar

    [14]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [15]

    Jeon N, Noh J, Yang W, Kim Y, Ryu S, Seo J, Seok S 2015 Nature 517 476Google Scholar

    [16]

    Tan H, Jain A, Voznyy O, et al. 2017 Science 355 722Google Scholar

    [17]

    Raghavan C M, Chen T P, Li S S, et al. 2018 Nano Lett. 18 3221Google Scholar

    [18]

    Wei Y, Chu H L, Tian Y Y, Chen B Q, Wu K F, Wang J H, Yang X C, Cai B, Zhang Y F, Zhao J J 2019 Adv. Energy Mater. 1 900612Google Scholar

    [19]

    Wu Y H, Ding Y, Liu X Y, Ding X H, Liu X P, Pan X, Dai S Y 2020 Sci. China Mater. 63 47Google Scholar

    [20]

    Chang R G, Yan Y T, Zhang J Y, Zhu Z L, Gu J H 2020 Thin Solid Films. 712 138279Google Scholar

  • 图 1  钙钛矿太阳电池结构

    Fig. 1.  Structure of perovskite solar cell.

    图 2  从正面和背面激发的(CMA)2(MA)8Pb9I28薄膜的PL光谱

    Fig. 2.  PL spectra of (CMA)2(MA)8Pb9I28 film excited from front and back side.

    图 3  不同CsI掺杂浓度(CMA)2MA8Pb9I28薄膜的SEM图像 (a) Cs0-2D; (b) Cs3-2D; (c) Cs5-2D; (d) Cs10-2D; (e) Cs15-2D

    Fig. 3.  SEM surface images of (CMA)2MA8Pb9I28 perovskite films doped with different CsI content: (a) Cs0-2D; (b) Cs3-2D; (c) Cs5-2D; (d) Cs10-2D; (e) Cs15-2D.

    图 4  不同CsI掺杂浓度(CMA)2MA8Pb9I28薄膜 (a) XRD谱; (b) (111)衍射峰半高宽

    Fig. 4.  (CMA)2MA8Pb9I28 perovskite films doped with different CsI content: (a) XRD patterns; (b) full width of half maximum at (111) peak.

    图 5  FTO玻璃衬底上, 不同CsI掺杂浓度(CMA)2MA8Pb9I28薄膜 (a) PL谱; (b)归一化PL谱; (c)时间分辨PL谱

    Fig. 5.  (CMA)2MA8Pb9I28 perovskite films doped with different CsI content on FTO substrates: (a) PL spectra; (b) normalization of the PL spectra; (c) time-resolved PL spectra.

    图 6  不同CsI掺杂浓度(CMA)2MA8Pb9I28的吸收谱

    Fig. 6.  Absorption spectra of (CMA)2MA8Pb9I28 films doped with different CsI content.

    图 7  不同CsI掺杂浓度(CMA)2MA8Pb9I28 薄膜在不同退火温度的照片

    Fig. 7.  Photographs of different CsI content doping (CMA)2MA8Pb9I28 films annealed at different temperatures.

    图 8  不同CsI掺杂浓度(CMA)2MA8Pb9I28钙钛矿太阳电池的J-V曲线

    Fig. 8.  J-V curves of (CMA)2MA8Pb9I28 perovskite solar cells doped with different CsI content.

    表 1  不同CsI掺杂浓度(CMA)2MA8Pb9I28钙钛矿太阳电池光伏参数

    Table 1.  Photovoltaic performance of (CMA)2MA8Pb9I28 perovskite solar cells doped with different CsI content.

    SampleJsc/(mA·cm–2)Voc/VFF/%PCE/%
    Cs0-2D21.051.0148.4010.06 a)
    (21.33±0.28)(1.00±0.01)(45.67±2.73)(9.43±0.63) b)
    Cs3-2D21.361.0349.1810.68 a)
    (20.74±1.29)(1.02±0.01)(45.66±3.52)(9.66±1.02) b)
    Cs5-2D22.081.0456.9613.08 a)
    (22.62±0.54)(1.04±0)(49.39±7.57)(11.56±1.52) b)
    Cs10-2D23.161.0560.7514.67 a)
    (21.90±1.26)(1.04±0.01)(56.07±4.68)(13.49±1.18) b)
    Cs15-2D22.711.0358.5814.12 a)
    (21.59±1.12)(1.00±0.03)(55.20±3.38)(12.23±1.89) b)
    : a)为最高效率; b)为平均值.
    下载: 导出CSV
  • [1]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316Google Scholar

    [2]

    Stranks S D, Snaith Henry J 2015 Nat. Nanotechnol. 10 391Google Scholar

    [3]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [4]

    Kim H S, Lee C R, Im J H, et al. 2012 Sci. Rep. 2 591Google Scholar

    [5]

    Wang M, Tan S, Zhao Y, et al. 2021 Adv. Funct. Mater. 31 2007520Google Scholar

    [6]

    Ponseca C S, Savenije T J, Abdellah M, et al. 2014 J. Am. Chem. Soc. 136 5189Google Scholar

    [7]

    Brenner T M, Egger D A, Kronik L, Hodes G, Cahen D 2016 Nat. Rev. Mater. 1 15007Google Scholar

    [8]

    Stoumpos C C, Malliakas C D, Kanatzidis M G 2013 Inorg. Chem. 52 9019Google Scholar

    [9]

    Zhao Y, Zhu K 2016 Chem. Soc. Rev. 45 655Google Scholar

    [10]

    Wolf S D, Holovsky J, Moon S J, et al. 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [11]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nat. Photonics 8 489Google Scholar

    [12]

    Wu Z W, Bai S, Xiang J, Yuan Z C, Yang Y G, Cui W, Gao X Y, Liu Z, Jin Y Z, Sun B Q 2014 Nanoscale 6 10505Google Scholar

    [13]

    Kim H S, Seo J Y, Park N G 2016 Chem. Sus. Chem 9 2528Google Scholar

    [14]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [15]

    Jeon N, Noh J, Yang W, Kim Y, Ryu S, Seo J, Seok S 2015 Nature 517 476Google Scholar

    [16]

    Tan H, Jain A, Voznyy O, et al. 2017 Science 355 722Google Scholar

    [17]

    Raghavan C M, Chen T P, Li S S, et al. 2018 Nano Lett. 18 3221Google Scholar

    [18]

    Wei Y, Chu H L, Tian Y Y, Chen B Q, Wu K F, Wang J H, Yang X C, Cai B, Zhang Y F, Zhao J J 2019 Adv. Energy Mater. 1 900612Google Scholar

    [19]

    Wu Y H, Ding Y, Liu X Y, Ding X H, Liu X P, Pan X, Dai S Y 2020 Sci. China Mater. 63 47Google Scholar

    [20]

    Chang R G, Yan Y T, Zhang J Y, Zhu Z L, Gu J H 2020 Thin Solid Films. 712 138279Google Scholar

  • [1] 许畅, 郑德旭, 董心睿, 吴飒建, 武明星, 王开, 刘生忠. 钙钛矿基三结叠层太阳电池的研究进展. 物理学报, 2024, 73(24): 248802. doi: 10.7498/aps.73.20241187
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [4] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [5] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [6] 杜相, 陈思, 林东旭, 谢方艳, 陈建, 谢伟广, 刘彭义. 十二烷二酸修饰TiO2电子传输层改善钙钛矿太阳电池的电流特性. 物理学报, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [7] 陈亮, 张利伟, 陈永生. 无铅和少铅的有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2018, 67(2): 028801. doi: 10.7498/aps.67.20171956
    [8] 耿超, 郑义, 张永哲, 严辉. 硅薄膜太阳电池表面纳米线阵列光学设计. 物理学报, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [9] 丁东, 杨仕娥, 陈永生, 郜小勇, 谷锦华, 卢景霄. Al纳米颗粒增强微晶硅薄膜太阳电池光吸收的模拟研究. 物理学报, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [10] 张丹霏, 郑灵灵, 马英壮, 王树峰, 卞祖强, 黄春辉, 龚旗煌, 肖立新. 影响杂化钙钛矿太阳能电池稳定性的因素探讨. 物理学报, 2015, 64(3): 038803. doi: 10.7498/aps.64.038803
    [11] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [12] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [13] 贾晓洁, 艾斌, 许欣翔, 杨江海, 邓幼俊, 沈辉. 选择性发射极晶体硅太阳电池的二维器件模拟及性能优化. 物理学报, 2014, 63(6): 068801. doi: 10.7498/aps.63.068801
    [14] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [15] 张坤, 刘芳洋, 赖延清, 李轶, 颜畅, 张治安, 李劼, 刘业翔. 太阳电池用Cu2ZnSnS4薄膜的反应溅射原位生长及表征. 物理学报, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [16] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [17] 吴伟才, 周印华, 温善鹏, 韩 靓, 田文晶. 溶剂效应对聚苯撑乙烯掺杂苝二酰亚胺太阳电池性能的影响. 物理学报, 2007, 56(8): 5003-5008. doi: 10.7498/aps.56.5003
    [18] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [20] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
计量
  • 文章访问数:  3166
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-09
  • 修回日期:  2023-05-07
  • 上网日期:  2023-05-08
  • 刊出日期:  2023-07-05

/

返回文章
返回