-
有机-无机金属卤化物钙钛矿太阳能电池(PSCs)因优异的光电转换性能被广泛研究, 但CH(NH2)2PbI3(FAPbI3)固有的化学不稳定性阻碍了其长期以来的发展. 特别是薄膜表界面处因更低的活化能而具有突出的湿度敏感性, 表界面的缺陷与薄膜稳定性具有强相关性, 缺陷的处理结果是提高长期稳定性的关键因素之一. 除了界面工程, 还有在表面叠加二维钙钛矿层的策略用于界面钝化. 然而二维钙钛矿层的制备方法多数具有局限性. 本文采用全溶液法的制备工艺, 通过在FAPbI3钙钛矿表面均匀涂覆丁基碘化铵(BAI)溶液与热退火的后处理方式, 驱动了表面二维(2D)钙钛矿的形成, 以减少薄膜表界面缺陷, 成功制备了混合维钙钛矿太阳能电池. 与此同时, 2D钙钛矿中长链分子的疏水性本质上提高了钙钛矿层对水分的容忍度. 结果表明, 含2D钙钛矿层的未封装器件在相对湿度(RH)为60%的室温环境空气中连续工作近1000 h后仍保持初始效率的80%以上. 这种方法构建的2D钙钛矿层在不影响载流子传输性能的同时显著提高了薄膜与器件的长期稳定性, 符合高质量钙钛矿太阳能电池的要求与发展趋势, 是一种极具发展潜力的策略.Organic-inorganic metal halide perovskite solar cells (PSCs) have been widely studied due to their excellent photoelectric conversion performance, but the inherent chemical instability of CH(NH2)2PbI3 (FAPbI3) hinders its sustainable development. In particular, the surface interface of the membrane has prominent humidity sensitivity due to lower activation energy, the defect of the surface interface has a strong correlation with the film stability, and the treatment result of the defect is one of the key factors to improve the long-term stability. The FAPbI3 suffers phase transition from black perovskite phase to yellow non-perovskite phase at room temperature, and the moisture will accelerate this phase transition. Interface engineering is one of the common methods to improve the stability of perovskite solar cells. In addition to interface engineering, there is a strategy of stacking a two-dimensional (2D) perovskite layer on the surface for interface passivation. However, most of the preparation methods of 2D perovskite layer have limitations. In this work, the full solution method and post-treatment mode of annealing are adopted, the hybrid perovskite solar cells of vitamin perovskite are successfully fabricated. The FAPbI3 perovskite surface is uniformly spin-coated with butylamine iodide (BAI) solution, and the formation of 2D perovskite is driven on the surface of FAPbI3 perovskite. Due to the passivation of surface interface defects by the 2D perovskite layer, the non-radiative recombination of charge carriers is reduced, greatly improving the carrier lifetime. Because of the hydrophobicity of long chain molecules in 2D perovskite, the long-term stability of the device is significantly improved. Consequently, the unencapsulated device containing 2D perovskite layer remains above 80% after operating at room temperature in ambient air with a relative humidity (RH) of 60% for nearly 1000 hours. The 2D perovskite layer can significantly improve the long-term stability of the film without affecting the charge carrier transport performance. This method of improving the stability of the device by constructing 2D perovskite layer is in line with the requirements and development trend of high-quality perovskite solar cells, and is a strategy with great development potential.
[1] Wang Y W, Zhang Y B, Zhang P H, Zhang W Q 2015 Phys. Chem. Chem. Phys. 17 11516Google Scholar
[2] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584Google Scholar
[3] Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nat. Phys. 11 582Google Scholar
[4] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar
[5] Du Q G, Shen G, John S 2016 AIP Adv. 6 065002Google Scholar
[6] Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295Google Scholar
[7] Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar
[8] Park N G 2015 Mater. Today 18 65Google Scholar
[9] Dong Q, Liu F, Wong M K, Tam H W, Djurišić A B, Ng A, Surya C, Chan W K, Ng A M C 2016 ChemSusChem 9 2597Google Scholar
[10] Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310Google Scholar
[11] Meng R, Wu G B, Zhou J Y, Zhou H Q, Fang H, Loi M A, Zhang Y 2019 Chem. A Eur. J. 25 5480Google Scholar
[12] Wu G B, Zhou J Y, Meng R, Xue B D, Zhou H Q, Tang Z Y, Zhang Y 2019 Phys. Chem. Chem. Phys. 21 3106Google Scholar
[13] Yang T H, Ma C, Cai W L, Wang S Q, Wu Y, Feng J S, Wu N, Li H J, Huang W L, Ding Z C, Gao L L, Liu S Z, Zhao K 2023 Joule 7 574Google Scholar
[14] Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2023-10-19]
[15] Wang D, Wright M, Elumalai N K, Uddin A 2016 Sol. Energy Mater. Sol. Cells 147 255Google Scholar
[16] Philippe B, Park B W, Lindblad R, Oscarsson J, Ahmadi S, Johansson E M J, Rensmo H 2015 Chem. Mater. 27 1720Google Scholar
[17] Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528Google Scholar
[18] Madhavan V E, Zimmermann I, Baloch A A B, Manekkathodi A, Belaidi A, Tabet N, Nazeeruddin M K 2020 ACS Appl. Energy Mater. 3 114Google Scholar
[19] Li N X, Niu X X, Chen Q, Zhou H P 2020 Chem. Soc. Rev. 49 8235Google Scholar
[20] Li X, Hoffman J M, Kanatzidis M G 2021 Chem. Rev. 121 2230Google Scholar
[21] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D 2016 Nature 536 312Google Scholar
[22] Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar
[23] Zhao S H, Xie J S, Cheng G H, Xiang Y R, Zhu H Y, Guo W Y, Wang H, Qin M C, Lu X H, Qu J L, Wang J N, Xu J B, Yan K Y 2018 Small 14 803350Google Scholar
[24] Perini C A R, Doherty T A S, Stranks S D, Correa-Baena J P, Hoye R L Z 2021 Joule 5 1024Google Scholar
[25] Wolff C M, Caprioglio P, Stolterfoht M, Neher D 2019 Adv. Mater. 31 1902762Google Scholar
[26] Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar
[27] Kong W Y, Zeng F, Su Z H, Wang T, Qiao L, Ye T S, Zhang L, Sun R T, Barbaud J, Li F, Gao X Y, Zheng R K, Yang X D 2022 Adv. Energy Mater. 12 202202704Google Scholar
[28] Li C, Zhu R, Yang Z, Lai J, Tan J, Luo Y, Ye S 2023 Angew. Chemie Int. Ed. 62 e202214208Google Scholar
[29] Mahmud M A, Duong T, Peng J, Wu Y, Shen H, Walter D, Nguyen H T, Mozaffari N, Tabi G D, Catchpole K R, Weber K J, White T P 2021 Adv. Funct. Mater. 32 2009164Google Scholar
[30] Li M H, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 801401Google Scholar
[31] Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H, Seok S Il 2019 Science 366 749Google Scholar
[32] Raghavan C M, Chen T P, Li S S, Chen W L, Lo C Y, Liao Y M, Haider G, Lin C C, Chen C C, Sankar R, Chang Y M, Chou F C, Chen C W 2018 Nano Lett. 18 3221Google Scholar
[33] Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar
[34] Zhang Y, Seo S, Lim S Y, Kim Y, Kim S G, Lee D K, Lee S H, Shin H, Cheong H, Park N G 2020 ACS Energy Lett. 5 360Google Scholar
[35] Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci. 12 308Google Scholar
[36] He M, Li B, Cui X, Jiang B B, He Y J, Chen Y H, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J S, Lin Z Q 2017 Nat. Commun. 8 16045Google Scholar
[37] Xing G C, Wu B, Chen S, Chua J, Yantara N, Mhaisalkar S, Mathews N, Sum T C 2015 Small 11 3613Google Scholar
[38] Galatopoulos F, Savva A, Papadas I T, Choulis S A 2017 APL Mater. 5 076102Google Scholar
[39] Cho Y, Soufiani A M, Yun J S, Kim J, Lee D S, Seidel J, Deng X, Green M A, Huang S, Ho-Baillie A W Y 2018 Adv. Energy Mater. 8 1703392Google Scholar
-
图 1 钙钛矿薄膜中2D相与3D相的示意与表征 (a) 二维钙钛矿薄膜与2D-3D钙钛矿薄膜结构的制备图; (b)—(d) 3D薄膜(对照组)和2D薄膜(实验组, BAI/IPA 0.5 mg/mL)的表征, 其中(b) XRD图谱, (c) 紫外-可见光吸收图谱, (d) 稳态PL图谱
Fig. 1. Schematic and characterization of 2D and 3D phases in perovskite films. (a) Preparation diagram of perovskite structure at the interface of 2D and 2D-3D perovskite film (CB, chlorobenzene). (b)–(d) The characterization of 3D film (control) and 2D film (target, with BAI/IPA 0.5 mg/mL): (b) X-ray diffraction patterns; (c) UV-vis absorption spectra; (d) steady-state PL spectra.
图 2 钙钛矿薄膜SEM形貌表征 (a) 3D钙钛矿薄膜的表面; (b) 2D-3D钙钛矿薄膜的表面; (c) 3D钙钛矿薄膜的截面; (d) 2D-3D钙钛矿薄膜的截面
Fig. 2. Surface morphology characterization of perovskite film: (a) Surface image of 3D perovskite film; (b) surface image of 2D-3D perovskite film; (c) surface image of 3D perovskite film; (d) surface image of 2D-3D perovskite film.
图 3 电池器件的载流子传输性能分析 (a) 钙钛矿薄膜的瞬态(TRPL)光谱; (b) FTO/ETL (TiO2) /Perovskite/PCBM/Ag结构的纯电子器件空间电荷限制电流(SCLC); (c) 3D与2D-3D钙钛矿器件的暗电流-电压(I-V)特性; (d) 3D与2D-3D钙钛矿器件的电化学阻抗谱(EIS)
Fig. 3. Analysis of carrier transport performance of devices: (a) Time-resolved photoluminescence (TRPL) for 3D perovskite film and 2D-3D perovskite film; (b) space charge limited current (SCLC) plots of electron-only devices with an architecture of FTO/ETL (TiO2) /Perovskite/PCBM/Ag based on 3D perovskite film and 2D-3D perovskite film; (c) dark current density-voltage (I-V ) characteristics of 3D perovskite film and 2D-3D perovskite film devices; (d) EIS of devices with 3D perovskite film and 2D-3D perovskite film.
图 4 电池器件的光电性能分析 (a) 钙钛矿太阳能电池的器件结构图; (b) 3D钙钛矿与2D-3D钙钛矿器件的J-V曲线; (c)—(f) 20组钙钛矿器件的光伏性能参数统计图
Fig. 4. Analysis of photoelectric performance of devices: (a) Device structure of perovskite solar cells; (b) J-V curves of perovskite solar cells prepared by 3D perovskite film and 2D-3D perovskite film; (c)–(f) statistical distribution of photovoltaic performance of perovskite devices.
图 5 电池器件的稳定性分析 (a) 3D钙钛矿薄膜与2D-3D钙钛矿薄膜的接触角测试; (b) 未封装器件在60%的相对湿度下, 在环境空气中进行近1000 h的PCE稳定性试验; (c)—(e) 3D钙钛矿薄膜与2D-3D钙钛矿薄膜在(c) 加热 (85 ℃)、(d) 高湿度 (RH: 85%)、(e) 光照 (AM 1.5G)下的相应XRD谱图
Fig. 5. Stability of devices: (a) Contact angle images of 3D perovskite film and 2D-3D perovskite film; (b) PCE stability test of the unencapsulated devices under 60% relative humidity at ambient air for nearly 1000 h; (c)–(e) XRD patterns of the control and target layers against (c) heat (85 ℃) , (d) moisture (RH: 85%), and (e) light (AM 1.5G).
-
[1] Wang Y W, Zhang Y B, Zhang P H, Zhang W Q 2015 Phys. Chem. Chem. Phys. 17 11516Google Scholar
[2] Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584Google Scholar
[3] Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nat. Phys. 11 582Google Scholar
[4] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982Google Scholar
[5] Du Q G, Shen G, John S 2016 AIP Adv. 6 065002Google Scholar
[6] Mei A Y, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2014 Science 345 295Google Scholar
[7] Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar
[8] Park N G 2015 Mater. Today 18 65Google Scholar
[9] Dong Q, Liu F, Wong M K, Tam H W, Djurišić A B, Ng A, Surya C, Chan W K, Ng A M C 2016 ChemSusChem 9 2597Google Scholar
[10] Lee J W, Kim D H, Kim H S, Seo S W, Cho S M, Park N G 2015 Adv. Energy Mater. 5 1501310Google Scholar
[11] Meng R, Wu G B, Zhou J Y, Zhou H Q, Fang H, Loi M A, Zhang Y 2019 Chem. A Eur. J. 25 5480Google Scholar
[12] Wu G B, Zhou J Y, Meng R, Xue B D, Zhou H Q, Tang Z Y, Zhang Y 2019 Phys. Chem. Chem. Phys. 21 3106Google Scholar
[13] Yang T H, Ma C, Cai W L, Wang S Q, Wu Y, Feng J S, Wu N, Li H J, Huang W L, Ding Z C, Gao L L, Liu S Z, Zhao K 2023 Joule 7 574Google Scholar
[14] Best Research-Cell Efficiencies https://www.nrel.gov/pv/cell-efficiency.html [2023-10-19]
[15] Wang D, Wright M, Elumalai N K, Uddin A 2016 Sol. Energy Mater. Sol. Cells 147 255Google Scholar
[16] Philippe B, Park B W, Lindblad R, Oscarsson J, Ahmadi S, Johansson E M J, Rensmo H 2015 Chem. Mater. 27 1720Google Scholar
[17] Kim H S, Seo J Y, Park N G 2016 ChemSusChem 9 2528Google Scholar
[18] Madhavan V E, Zimmermann I, Baloch A A B, Manekkathodi A, Belaidi A, Tabet N, Nazeeruddin M K 2020 ACS Appl. Energy Mater. 3 114Google Scholar
[19] Li N X, Niu X X, Chen Q, Zhou H P 2020 Chem. Soc. Rev. 49 8235Google Scholar
[20] Li X, Hoffman J M, Kanatzidis M G 2021 Chem. Rev. 121 2230Google Scholar
[21] Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D 2016 Nature 536 312Google Scholar
[22] Grancini G, Roldán-Carmona C, Zimmermann I, Mosconi E, Lee X, Martineau D, Narbey S, Oswald F, De Angelis F, Graetzel M, Nazeeruddin M K 2017 Nat. Commun. 8 15684Google Scholar
[23] Zhao S H, Xie J S, Cheng G H, Xiang Y R, Zhu H Y, Guo W Y, Wang H, Qin M C, Lu X H, Qu J L, Wang J N, Xu J B, Yan K Y 2018 Small 14 803350Google Scholar
[24] Perini C A R, Doherty T A S, Stranks S D, Correa-Baena J P, Hoye R L Z 2021 Joule 5 1024Google Scholar
[25] Wolff C M, Caprioglio P, Stolterfoht M, Neher D 2019 Adv. Mater. 31 1902762Google Scholar
[26] Xu W D, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kawecki M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar
[27] Kong W Y, Zeng F, Su Z H, Wang T, Qiao L, Ye T S, Zhang L, Sun R T, Barbaud J, Li F, Gao X Y, Zheng R K, Yang X D 2022 Adv. Energy Mater. 12 202202704Google Scholar
[28] Li C, Zhu R, Yang Z, Lai J, Tan J, Luo Y, Ye S 2023 Angew. Chemie Int. Ed. 62 e202214208Google Scholar
[29] Mahmud M A, Duong T, Peng J, Wu Y, Shen H, Walter D, Nguyen H T, Mozaffari N, Tabi G D, Catchpole K R, Weber K J, White T P 2021 Adv. Funct. Mater. 32 2009164Google Scholar
[30] Li M H, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F 2018 Adv. Mater. 30 801401Google Scholar
[31] Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H, Seok S Il 2019 Science 366 749Google Scholar
[32] Raghavan C M, Chen T P, Li S S, Chen W L, Lo C Y, Liao Y M, Haider G, Lin C C, Chen C C, Sankar R, Chang Y M, Chou F C, Chen C W 2018 Nano Lett. 18 3221Google Scholar
[33] Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar
[34] Zhang Y, Seo S, Lim S Y, Kim Y, Kim S G, Lee D K, Lee S H, Shin H, Cheong H, Park N G 2020 ACS Energy Lett. 5 360Google Scholar
[35] Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci. 12 308Google Scholar
[36] He M, Li B, Cui X, Jiang B B, He Y J, Chen Y H, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J S, Lin Z Q 2017 Nat. Commun. 8 16045Google Scholar
[37] Xing G C, Wu B, Chen S, Chua J, Yantara N, Mhaisalkar S, Mathews N, Sum T C 2015 Small 11 3613Google Scholar
[38] Galatopoulos F, Savva A, Papadas I T, Choulis S A 2017 APL Mater. 5 076102Google Scholar
[39] Cho Y, Soufiani A M, Yun J S, Kim J, Lee D S, Seidel J, Deng X, Green M A, Huang S, Ho-Baillie A W Y 2018 Adv. Energy Mater. 8 1703392Google Scholar
计量
- 文章访问数: 3767
- PDF下载量: 101
- 被引次数: 0