搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿太阳能电池近期进展

柴磊 钟敏

引用本文:
Citation:

钙钛矿太阳能电池近期进展

柴磊, 钟敏

Recent research progress in perovskite solar cells

Chai Lei, Zhong Min
PDF
导出引用
  • 近几年来,基于有机无机金属卤化物钙钛矿(ABX3)的太阳能电池由于其独特的物理化学性质受到了广泛的关注.这种钙钛矿材料具有很高的消光系数、较强的电荷传递能力、长的载流子寿命、长的载流子扩散距离以及特殊的双极性,同时低成本易制作.自2009年至今,钙钛矿太阳能电池的光电转换效率从最初的3.8%增长到了20.8%,使之成为最有可能在未来代替传统单晶硅太阳能电池的新型太阳能电池.同时,由于钙钛矿具有双极性,故钙钛矿太阳能电池的结构也有多种,最常见的结构有介孔结构、平面结构、介观超结构、无空穴传输层结构等.本文主要介绍钙钛矿太阳能电池的发展、电池结构及其对光电池性能的影响、钙钛矿薄膜的制备方法,同时探讨了钙钛矿在电子传输层上的吸附模型和电荷在电池界面中的传输机理以及界面工程,并介绍该类型电池在近期所获得的突破及未来可能的发展方向,以便对钙钛矿太阳能电池有进一步的了解.
    Recently, all-solid state hybrid solar cells based on organic-inorganic metal halide perovskite (ABX3) materials have received much attention from the academic circle all over the world due to their unique physical and chemical properties. The perovskite materials exhibit advantages of high extinction coefficient, high charge mobility, long carrier lifetime, and long carrier diffusion distance. Furthermore, they are low cost and easily synthesized. The power conversion efficiency (PCE) has exceeded 20.8% since the PCE of 3.8% was first reported in 2009, making the perovskite solar cells the best potential candidate of the new generation solar cells to replace the high-cost and highly polluting silicon solar cells in the future. Meanwhile, because of the well-known special bipolar properties of the perovskite materials, various structures are designed such as the all-solid state mesoscopic heterojunctions, planar-heterojunctions, meso-superstructures, and HTM-free structures. In this review, we first introduce the development of the perovskite solar cells and then focus on the cell structure and its influence on the cell performance. Besides, the synthesis methods of the perovskite films and the performance characteristics and advantages of the perovskite solar cells with different cell structures are also discussed. It is found that although the perovskite crystals prepared by a one-step spin-coating method have bigger grain sizes, their morphologies are rougher and uncontrollable, which may suppress the charge carrier extraction efficiency and lead to a relatively low power conversion efficiency. Meanwhile, vapor-assisted method needs vaccum conditions, which significantly increases the manufacture cost of PSC. Compared with these methods mentioned above, solution-based sequential deposition method can not only enhance the reproducibility of PSC, but also obtain a higher PCE with a lower cost. Afterwards, the photogenerated carrier transport mechanism of the perovskite solar cells is discussed. The possible atomic interaction model and the electron structure between perovskite film and electron transport layer are proposed. There are two possible interface atomic structures at the interface of perovskite CH3NH3PbI3 and TiO2. It is supposed that the interaction between iodine atoms and titanium atoms dominates the atomic structure at the interface of CH3NH3PbI3 and TiO2, while the lead atoms are believed to bond to oxygen atoms. As is well known, charge extraction, transfer and recombination mainly occur at the interface of a cell. Therefore, the interface engineering including the design for energy level matching is important and necessary to enhance the charge transport efficiency, suppress the charge recombination and eventually improve the performance of perovskite solar cells. Moreover, the properties of the main electron transport layer (ZnO, TiO2, PCBM, Al2O3) and hole transport layer (spiro-OMeTAD, P3 HT, NiO, PTAA) and their influences on the PCE of the perovskite solar cells are discussed. The main challenges of the all-solid state hybrid perovskite solar cells such as environment pollution, the extremely small working areas and the instability are introduced. Finally, the development prospects of perovskite solar cells in the future are proposed in order to have a better understanding of the perovskite solar cells.
      通信作者: 钟敏, zhongmin@cjlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21471140,21101143)资助的课题.
      Corresponding author: Zhong Min, zhongmin@cjlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21471140, 21101143).
    [1]

    Cui J, Yuan H L, Li J P, Xu X B, Shen Y, Lin H, Wang M K 2015 Sci. Technol. Adv. Mater. 16 036004

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2012 Prog. Photovoltaics 20 12

    [3]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [4]

    Bi D Q, Tress W G, Dar M I, Gao P, Luo J S, Renevier C, Schenk K, Abate A, Giordano F, Baena J P, Decoppe J, Zakeeruddin S M, Nazeeruddin M K, Grötzel M, Hagfeldt A 2016 Sci. Adv. Mater. 2 e1501170

    [5]

    Li Y W, Meng L, Yang Y, Xu G Y, Hong Z, Chen Q, You J B, Li G, Yang Y, Li Y F 2015 Nat. Commun. 7 10214

    [6]

    Gao P, Gratze M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [7]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [8]

    Zhao Y X, Zhu K 2015 J. Mater. Chem. A 3 9086

    [9]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [10]

    Chen Q, Zhou H P, Hong Z, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [11]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [12]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [13]

    Zhang W, Eperson G E, Snaith H J 2016 Nature Energy 160 48

    [14]

    Hsiao Y C, Wu T, Li M X, Liu Q, Wei Q, Hu B 2015 J. Mater. Chem. A 3 15372

    [15]

    Liu D Y, Kelly T L 2014 Nat. Photonics 8 133

    [16]

    D'Innocenzo V, Grancini G, Alcocer M J, Kandada A R, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A 2014 Nat. Commun. 5 3586

    [17]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [18]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [19]

    Hardin B E, Snaith H J, McGehee M D 2012 Nat. Photonics 6 162

    [20]

    Heo J H, Song D H, Patil B R, Im S H 2015 Isr. J. Chem. 55 966

    [21]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591

    [22]

    Heo J H, Im S H, Noh J H, Madal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Gratzel M, Seok S I 2013 Nat. Photonics 7 486

    [23]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [24]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S 2015 Science 348 6240

    [25]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [26]

    Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Gratzel M, Nazeeruddin M K, Bolink H J 2014 Nat. Photonics 8 128

    [27]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang J S 2014 Adv. Mater. 26 6503

    [28]

    Im J H, Jang I H, Pellet N, Gratzel M, Park N G 2014 Nat. Nanotechnol. 9 927

    [29]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [30]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2015 Science 345 6196

    [31]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [32]

    Bi D, Moon S J, Higgman L, Boschloo G, Yang L, Johansson E M J, Nazeeruddin M K, Gratzel M 2013 RSC Adv. 3 18762

    [33]

    Mei A, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2015 Science 345 6194

    [34]

    Chen J Z, Rong Y G, Mei A Y, Xiong Y L, Liu T F, Sheng Y S, Jiang P, Hong L, Guan Y J, Zhu X T, Hou X M, Duan M, Zhao J Q, Li X, Han H W 2015 Adv. Energy Mater. 15 02009

    [35]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [36]

    Shi J, Dong J, L S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [37]

    Heo J H, Song D H, Im S H 2014 Adv. Mater. 26 8179

    [38]

    Lawrence C J 1988 Phys. Fluids 31 2786

    [39]

    Zhao Y, Zhu K 2014 J. Phys. Chem. C 118 9412

    [40]

    Zuo C, Ding L 2014 Nanoscale 6 9935

    [41]

    Xiao M, Huang F Z, Huang W C, Dkhissi Y, Zhu Y, Etheridge J, G-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. 126 10056

    [42]

    Sun L C 2015 Nat. Chem. 7 684

    [43]

    Salau A M, Sol 1980 Energy Mater. 2 327

    [44]

    Mitzi D B, Prikas M T, Chondroudis K 1999 Chem. Mater. 11 542

    [45]

    Roldn-Carmona C, Malinkiewicz O, Soriano A, Mnguez Espallargas G, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddin M K, Bolink H J 2014 Energy Environ. Sci. 7 994

    [46]

    Shao Z P, Pan X, Zhang X H, Ye J J, Zhu L Z, Li Y, Ma Y M, Huang Y, Zhu J, Hu L H, Dai S Y 2015 Acta Chim. Sin. 73 267 (in Chinese)[邵志鹏, 潘旭, 张旭辉, 叶加久, 朱梁正, 李毅, 马艳梅, 黄阳, 朱俊, 胡林华, 孔凡太, 戴松元2015化学学报73 267]

    [47]

    Xue Q F, Sun C, Hu Z C, Huang F, Ye X L, Cao Y 2015 Acta Chim. Sin. 73 179 (in Chinese)[薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛2015化学学报73 179]

    [48]

    Shi J J, Xu X, Li D M, Meng Q B 2015 Small 2014 03534

    [49]

    Roiati V, Mosconi E, Listorti A, Colella S, Gigli G, Angelis F D 2014 Nano Lett. 14 2168

    [50]

    Geng W, Tong C J, Liu J, Zhu W J, Lau W M, Liu L M 2016 Sci. Rep. 6 20131

    [51]

    Yella A, Heiniger L P, Gao P, Nazeeruddin M K, Grötzel M 2014 Nano Lett. 14 2591

    [52]

    Dong X, Hu H, Lin B, Ding J, Yuan N 2014 Chem. Commun. 50 14405

    [53]

    Snaith H J, Grätzel M 2006 Adv. Mater. 18 1910

    [54]

    Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C 2014 J. Am. Chem. Soc. 136 12205

    [55]

    Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q 2014 ACS Nano 8 10161

    [56]

    Ding X J, Ni L, Ma S B, Ma Y S, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802 (in Chinese)[丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚2015物理学报64 038802]

    [57]

    Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan L, Yan H, Phillips D L, Yang S 2014 J. Am. Chem. Soc. 136 3760

    [58]

    Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C, Friend R H, Jen A K Y, Snaith H J 2014 ACS Nano 8 12701

    [59]

    Xiao Y, Han G, Li Y, Li M, Wu J 2014 J. Mater. Chem. A 2 16856

    [60]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grötzel M, Han H 2014 Science 345 295

    [61]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 591

    [62]

    Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E 2000 J. Mol. Catal. A:Chem. 161 205

    [63]

    Wang K, Shi Y T, Dong Q S, Li Y, Wang S F, Yu X F, Wu M Y, Ma T L 2015 J. Phys. Chem. Lett. 6 755

    [64]

    Yang D, Yang R X, Zhang J, Yang Z, Liu S Z, Li C 2015 Energy Environ. Sci. 8 3208

    [65]

    Fu F, Feurer T, Jager T, Avancini E, Bissig B, Yoon S, Buecheler S, Tiwari A N 2015 Nat. Commun. 6 8932

    [66]

    Song Z H, Wang S R, Xiao Y, Li X G 2015 Acta Phys. Sin. 64 033301 (in Chinese)[宋志浩, 王世荣, 肖殷, 李祥高2015物理学报64 033301]

    [67]

    Choi H, Paek S, Lim N, Lee Y, Nazeeruddin M K, Ko J 2014 Chem. Eur. J. 20 10894

    [68]

    Xu B, Bi D Q, Hua Y, Liu P, Cheng M, Grätzel M, Kloo L, Hagfeldt A, Sun L C 2016 Energy Environ. Sci. DOI:10.1039/C6EE00056H

    [69]

    Wang Y K, Yuan Z C, Shi G Z, Li Y X, Li Q, Hui F, Sun B Q, Jiang Z Q, Liao L S 2016 Adv. Funct. Mater. DOI:10.1002/adfm.201504245

    [70]

    Wang J J, Wang S R, Li X G, Zhu L F, Meng Q B, XiaoY, Li D M 2014 Chem. Commun. 50 5829

    [71]

    Lv S T, Han L Y, Xiao J Y, Zhu L F, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Li D M, Wang S R, Luo Y H, Meng Q B, Li X G 2014 Chem. Commun. 50 6931

    [72]

    Krishnamoorthy T, Kunwu F, Boix P P, Li H, Koh T M, Leong W L, Powar S, Grimsdale A, Grötzel M, Mathews N, Mhaisalkar S G 2014 J. Mater. Chem. A 2 6305

    [73]

    Li H R, Fu K, Hagfeldt A, Grötzel M, Mhaisalkar S G, Grimsdale A C 2014 Angew. Chem. Int. Ed. 53 4085

    [74]

    Krishna A, Sabba D, Li H R, Yin J, Boix P P, Soci C, Mhaisalkar S G, Grimsdale A C 2014 Chem. Sci. 5 2702

    [75]

    Xiao J Y, Han L Y, Zhu L F, Lv S T, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Xiao Y, Li D M, Wang S R, Luo Y H, Li X G, Meng Q B 2014 RSC Adv. 4 32918

    [76]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grötzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087

    [77]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963

    [78]

    Qin P, Paek S, Dar M I, Pellet N, Ko J, Grötzel M, Nazeeruddin M K 2014 J. Am. Chem. Soc. 8 516

    [79]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561

    [80]

    Chiang C H, Tseng Z L, Wu C G 2014 J. Mater. Chem. A 2 15897

    [81]

    Kwon Y S, Lim J, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454

    [82]

    Yan W B, Li Y L, Sun W H, Peng H T, Ye S Y, Liu Z W, Bian Z Q, Huang C H 2014 RSC Adv. 4 33039

    [83]

    Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J W, Seok S I 2014 Energy Environ. Sci. 7 2614

    [84]

    Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Grötzel M 2014 Nat. Commun. 5 3834

    [85]

    Wang K C, Jeng J Y, Shen P S, Chang Y C, Diau E W G, Tsai C H, Chao T Y, Hsu H C, Lin P Y, Chen P, Guo T F, Wen T C 2014 Sci. Rep. 4 4756

    [86]

    Feng H, Stoumpos C, Cao D H, Chang P H, Kanatzidis M G 2014 Nat. Photonics 8 489

    [87]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E, Ashraful I, Grötzel M, Han L Y 2015 Science 350 6263

    [88]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner T M, Haghighirad A, Sakai N, Korte L, Rech B, Johnston B M, Herz M L, Snaith H J 2016 Science 351 6269

  • [1]

    Cui J, Yuan H L, Li J P, Xu X B, Shen Y, Lin H, Wang M K 2015 Sci. Technol. Adv. Mater. 16 036004

    [2]

    Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D 2012 Prog. Photovoltaics 20 12

    [3]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [4]

    Bi D Q, Tress W G, Dar M I, Gao P, Luo J S, Renevier C, Schenk K, Abate A, Giordano F, Baena J P, Decoppe J, Zakeeruddin S M, Nazeeruddin M K, Grötzel M, Hagfeldt A 2016 Sci. Adv. Mater. 2 e1501170

    [5]

    Li Y W, Meng L, Yang Y, Xu G Y, Hong Z, Chen Q, You J B, Li G, Yang Y, Li Y F 2015 Nat. Commun. 7 10214

    [6]

    Gao P, Gratze M, Nazeeruddin M K 2014 Energy Environ. Sci. 7 2448

    [7]

    Burschka J, Pellet N, Moon S J, Baker R H, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [8]

    Zhao Y X, Zhu K 2015 J. Mater. Chem. A 3 9086

    [9]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395

    [10]

    Chen Q, Zhou H P, Hong Z, Luo S, Duan H S, Wang H H, Liu Y S, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [11]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [12]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643

    [13]

    Zhang W, Eperson G E, Snaith H J 2016 Nature Energy 160 48

    [14]

    Hsiao Y C, Wu T, Li M X, Liu Q, Wei Q, Hu B 2015 J. Mater. Chem. A 3 15372

    [15]

    Liu D Y, Kelly T L 2014 Nat. Photonics 8 133

    [16]

    D'Innocenzo V, Grancini G, Alcocer M J, Kandada A R, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A 2014 Nat. Commun. 5 3586

    [17]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [18]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [19]

    Hardin B E, Snaith H J, McGehee M D 2012 Nat. Photonics 6 162

    [20]

    Heo J H, Song D H, Patil B R, Im S H 2015 Isr. J. Chem. 55 966

    [21]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Yum J H, Moser J E, Gratzel M, Park N G 2012 Sci. Rep. 2 591

    [22]

    Heo J H, Im S H, Noh J H, Madal T N, Lim C S, Chang J A, Lee Y H, Kim H J, Sarkar A, Nazeeruddin M K, Gratzel M, Seok S I 2013 Nat. Photonics 7 486

    [23]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764

    [24]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S 2015 Science 348 6240

    [25]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897

    [26]

    Malinkiewicz O, Yella A, Lee Y H, Espallargas G M, Gratzel M, Nazeeruddin M K, Bolink H J 2014 Nat. Photonics 8 128

    [27]

    Xiao Z G, Dong Q F, Bi C, Shao Y C, Yuan Y B, Huang J S 2014 Adv. Mater. 26 6503

    [28]

    Im J H, Jang I H, Pellet N, Gratzel M, Park N G 2014 Nat. Nanotechnol. 9 927

    [29]

    Seo J, Park S, Kim Y C, Jeon N J, Noh J H, Yoon S C, Seok S I 2014 Energy Environ. Sci. 7 2642

    [30]

    Zhou H P, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z R, You J B, Liu Y S, Yang Y 2015 Science 345 6196

    [31]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739

    [32]

    Bi D, Moon S J, Higgman L, Boschloo G, Yang L, Johansson E M J, Nazeeruddin M K, Gratzel M 2013 RSC Adv. 3 18762

    [33]

    Mei A, Li X, Liu L F, Ku Z L, Liu T F, Rong Y G, Xu M, Hu M, Chen J Z, Yang Y, Grätzel M, Han H W 2015 Science 345 6194

    [34]

    Chen J Z, Rong Y G, Mei A Y, Xiong Y L, Liu T F, Sheng Y S, Jiang P, Hong L, Guan Y J, Zhu X T, Hou X M, Duan M, Zhao J Q, Li X, Han H W 2015 Adv. Energy Mater. 15 02009

    [35]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [36]

    Shi J, Dong J, L S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [37]

    Heo J H, Song D H, Im S H 2014 Adv. Mater. 26 8179

    [38]

    Lawrence C J 1988 Phys. Fluids 31 2786

    [39]

    Zhao Y, Zhu K 2014 J. Phys. Chem. C 118 9412

    [40]

    Zuo C, Ding L 2014 Nanoscale 6 9935

    [41]

    Xiao M, Huang F Z, Huang W C, Dkhissi Y, Zhu Y, Etheridge J, G-Weale A, Bach U, Cheng Y B, Spiccia L 2014 Angew. Chem. 126 10056

    [42]

    Sun L C 2015 Nat. Chem. 7 684

    [43]

    Salau A M, Sol 1980 Energy Mater. 2 327

    [44]

    Mitzi D B, Prikas M T, Chondroudis K 1999 Chem. Mater. 11 542

    [45]

    Roldn-Carmona C, Malinkiewicz O, Soriano A, Mnguez Espallargas G, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddin M K, Bolink H J 2014 Energy Environ. Sci. 7 994

    [46]

    Shao Z P, Pan X, Zhang X H, Ye J J, Zhu L Z, Li Y, Ma Y M, Huang Y, Zhu J, Hu L H, Dai S Y 2015 Acta Chim. Sin. 73 267 (in Chinese)[邵志鹏, 潘旭, 张旭辉, 叶加久, 朱梁正, 李毅, 马艳梅, 黄阳, 朱俊, 胡林华, 孔凡太, 戴松元2015化学学报73 267]

    [47]

    Xue Q F, Sun C, Hu Z C, Huang F, Ye X L, Cao Y 2015 Acta Chim. Sin. 73 179 (in Chinese)[薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛2015化学学报73 179]

    [48]

    Shi J J, Xu X, Li D M, Meng Q B 2015 Small 2014 03534

    [49]

    Roiati V, Mosconi E, Listorti A, Colella S, Gigli G, Angelis F D 2014 Nano Lett. 14 2168

    [50]

    Geng W, Tong C J, Liu J, Zhu W J, Lau W M, Liu L M 2016 Sci. Rep. 6 20131

    [51]

    Yella A, Heiniger L P, Gao P, Nazeeruddin M K, Grötzel M 2014 Nano Lett. 14 2591

    [52]

    Dong X, Hu H, Lin B, Ding J, Yuan N 2014 Chem. Commun. 50 14405

    [53]

    Snaith H J, Grätzel M 2006 Adv. Mater. 18 1910

    [54]

    Wang L, McCleese C, Kovalsky A, Zhao Y, Burda C 2014 J. Am. Chem. Soc. 136 12205

    [55]

    Hu Q, Wu J, Jiang C, Liu T, Que X, Zhu R, Gong Q 2014 ACS Nano 8 10161

    [56]

    Ding X J, Ni L, Ma S B, Ma Y S, Xiao L X, Chen Z J 2015 Acta Phys. Sin. 64 038802 (in Chinese)[丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚2015物理学报64 038802]

    [57]

    Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan L, Yan H, Phillips D L, Yang S 2014 J. Am. Chem. Soc. 136 3760

    [58]

    Wojciechowski K, Stranks S D, Abate A, Sadoughi G, Sadhanala A, Kopidakis N, Rumbles G, Li C, Friend R H, Jen A K Y, Snaith H J 2014 ACS Nano 8 12701

    [59]

    Xiao Y, Han G, Li Y, Li M, Wu J 2014 J. Mater. Chem. A 2 16856

    [60]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Grötzel M, Han H 2014 Science 345 295

    [61]

    Eperon G E, Burlakov V M, Goriely A, Snaith H J 2014 ACS Nano 8 591

    [62]

    Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi E 2000 J. Mol. Catal. A:Chem. 161 205

    [63]

    Wang K, Shi Y T, Dong Q S, Li Y, Wang S F, Yu X F, Wu M Y, Ma T L 2015 J. Phys. Chem. Lett. 6 755

    [64]

    Yang D, Yang R X, Zhang J, Yang Z, Liu S Z, Li C 2015 Energy Environ. Sci. 8 3208

    [65]

    Fu F, Feurer T, Jager T, Avancini E, Bissig B, Yoon S, Buecheler S, Tiwari A N 2015 Nat. Commun. 6 8932

    [66]

    Song Z H, Wang S R, Xiao Y, Li X G 2015 Acta Phys. Sin. 64 033301 (in Chinese)[宋志浩, 王世荣, 肖殷, 李祥高2015物理学报64 033301]

    [67]

    Choi H, Paek S, Lim N, Lee Y, Nazeeruddin M K, Ko J 2014 Chem. Eur. J. 20 10894

    [68]

    Xu B, Bi D Q, Hua Y, Liu P, Cheng M, Grätzel M, Kloo L, Hagfeldt A, Sun L C 2016 Energy Environ. Sci. DOI:10.1039/C6EE00056H

    [69]

    Wang Y K, Yuan Z C, Shi G Z, Li Y X, Li Q, Hui F, Sun B Q, Jiang Z Q, Liao L S 2016 Adv. Funct. Mater. DOI:10.1002/adfm.201504245

    [70]

    Wang J J, Wang S R, Li X G, Zhu L F, Meng Q B, XiaoY, Li D M 2014 Chem. Commun. 50 5829

    [71]

    Lv S T, Han L Y, Xiao J Y, Zhu L F, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Li D M, Wang S R, Luo Y H, Meng Q B, Li X G 2014 Chem. Commun. 50 6931

    [72]

    Krishnamoorthy T, Kunwu F, Boix P P, Li H, Koh T M, Leong W L, Powar S, Grimsdale A, Grötzel M, Mathews N, Mhaisalkar S G 2014 J. Mater. Chem. A 2 6305

    [73]

    Li H R, Fu K, Hagfeldt A, Grötzel M, Mhaisalkar S G, Grimsdale A C 2014 Angew. Chem. Int. Ed. 53 4085

    [74]

    Krishna A, Sabba D, Li H R, Yin J, Boix P P, Soci C, Mhaisalkar S G, Grimsdale A C 2014 Chem. Sci. 5 2702

    [75]

    Xiao J Y, Han L Y, Zhu L F, Lv S T, Shi J J, Wei H Y, Xu Y Z, Dong J, Xu X, Xiao Y, Li D M, Wang S R, Luo Y H, Li X G, Meng Q B 2014 RSC Adv. 4 32918

    [76]

    Jeon N J, Lee J, Noh J H, Nazeeruddin M K, Grötzel M, Seok S I 2013 J. Am. Chem. Soc. 135 19087

    [77]

    Liu J, Wu Y Z, Qin C J, Yang X D, Yasuda T, Islam A, Zhang K, Peng W Q, Chen W, Han L Y 2014 Energy Environ. Sci. 7 2963

    [78]

    Qin P, Paek S, Dar M I, Pellet N, Ko J, Grötzel M, Nazeeruddin M K 2014 J. Am. Chem. Soc. 8 516

    [79]

    Habisreutinger S N, Leijtens T, Eperon G E, Stranks S D, Nicholas R J, Snaith H J 2014 Nano Lett. 14 5561

    [80]

    Chiang C H, Tseng Z L, Wu C G 2014 J. Mater. Chem. A 2 15897

    [81]

    Kwon Y S, Lim J, Yun H J, Kim Y H, Park T 2014 Energy Environ. Sci. 7 1454

    [82]

    Yan W B, Li Y L, Sun W H, Peng H T, Ye S Y, Liu Z W, Bian Z Q, Huang C H 2014 RSC Adv. 4 33039

    [83]

    Ryu S, Noh J H, Jeon N J, Kim Y C, Yang W S, Seo J W, Seok S I 2014 Energy Environ. Sci. 7 2614

    [84]

    Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin M K, Grötzel M 2014 Nat. Commun. 5 3834

    [85]

    Wang K C, Jeng J Y, Shen P S, Chang Y C, Diau E W G, Tsai C H, Chao T Y, Hsu H C, Lin P Y, Chen P, Guo T F, Wen T C 2014 Sci. Rep. 4 4756

    [86]

    Feng H, Stoumpos C, Cao D H, Chang P H, Kanatzidis M G 2014 Nat. Photonics 8 489

    [87]

    Chen W, Wu Y Z, Yue Y F, Liu J, Zhang W J, Yang X D, Chen H, Bi E, Ashraful I, Grötzel M, Han L Y 2015 Science 350 6263

    [88]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner T M, Haghighirad A, Sakai N, Korte L, Rech B, Johnston B M, Herz M L, Snaith H J 2016 Science 351 6269

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 刘思雯, 任立志, 金博文, 宋欣, 吴聪聪. 溶液法制备二维钙钛矿层提高甲脒碘化铅钙钛矿太阳能电池稳定性. 物理学报, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [3] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [4] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [5] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [6] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [7] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [8] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [9] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [10] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [11] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [12] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [13] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [14] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [15] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [16] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [17] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [18] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展. 物理学报, 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
计量
  • 文章访问数:  15192
  • PDF下载量:  1974
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-15
  • 修回日期:  2016-09-07
  • 刊出日期:  2016-12-05

/

返回文章
返回