搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲脒碘化铅单晶基钙钛矿太阳能电池的研究

朱咏琪 刘钰雪 石洋 吴聪聪

引用本文:
Citation:

甲脒碘化铅单晶基钙钛矿太阳能电池的研究

朱咏琪, 刘钰雪, 石洋, 吴聪聪

High performance perovskite solar cells synthesized by dissolving FAPbI3 single crystal

Zhu Yong-Qi, Liu Yu-Xue, Shi Yang, Wu Cong-Cong
PDF
HTML
导出引用
  • 近年来, CH(NH2)2PbI3(FAPbI3)由于其带隙接近理想值而受到了广泛关注, 成为钙钛矿太阳能电池中最具吸引力的光电功能材料. 然而由碘甲脒 (FAI) 和碘化铅 (PbI2)作为前驱体制备的传统钙钛矿层化学计量比不精准, 缺陷密度大, 稳定性差且结晶度较低, 导致钙钛矿太阳能电池性能很难进一步提高. 本文采用FAPbI3单晶制备的钙钛矿薄膜具有高结晶度, 高稳定性, 精确的化学计量比和低缺陷密度. 单晶钙钛矿薄膜的晶粒尺寸大, 晶界少, 导致晶界处缺陷较少, 提高了钙钛矿太阳能电池的短路电流密度(JSC)和开路电压(VOC), 使其光电转换效率有了大幅度的提高. 本文为制备高稳定性、高结晶度和低缺陷密度的钙钛矿太阳能电池提供了一种有效策略.
    In recent years, CH(NH2)2PbI3 (FAPbI3) has received extensive attention due to the suitable band gap, becoming the most attractive photoelectric functional material in perovskite solar cells. However, the traditional perovskite layer prepared by formamidine iodide (FAI) and lead iodide (PbI2) has inaccurate stoichiometric ratio, high defect density, low stability, and low crystallinity, which makes it challenging to improve the performance of perovskite solar cells further. In this paper, the perovskite film prepared by FAPbI3 single crystal has high crystallinity, high stability, accurate stoichiometric ratio and low defect density. The single crystal derived perovskite film has a large grain size and few grain boundaries, resulting in fewer defects in the grain boundaries, which improves the short-circuit current density (JSC) and open-circuit voltage (VOC) of perovskite solar cells, and greatly improves the photoelectric conversion efficiency. This work provides an efficient strategy for fabricating perovskite solar cells with high stability, high crystallinity, and low defect density.
      通信作者: 吴聪聪, ccwu@hubu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62004064)和湖北省重点研发计划项目(批准号: 2022BAA096)资助的课题.
      Corresponding author: Wu Cong-Cong, ccwu@hubu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62004064) and the Key R&D Program of Hubei Province, China (Grant No. 2022BAA096).
    [1]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H 2014 Energy Environ. Sci. 7 982Google Scholar

    [2]

    De Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif 2014 Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Stranks S, Eperon G, Grancini G, Menelaou C, Alcocer M, Leijtens T, Herz L, Petrozza A, Snaith H 2013 Science 342 341

    [4]

    Chen C W, Hsiao S Y, Chen C Y, Kang H W, Huang Z Y, Lin H W 2015 Mater. Chem. 3 9152Google Scholar

    [5]

    Su H, Lin X, Wang Y, Liu X, Qin Z, Shi Q 2022 Sci. China Chem. 65 467

    [6]

    Wang B, Iocozzia J, Zhang M, Ye M, Yan S, Jin H, Wang S, Zou Z, Lin Z 2019 Chem. Soc. Rev. 48 4854Google Scholar

    [7]

    Zhang M, Cui X, Wang Y, Wang B, Ye M, Wang W, Ma C, Lin Z. 2020 Nano Energy 71 104620Google Scholar

    [8]

    Zhang M, Ye M, Wang W, Ma C, Wang S, Liu Q, Lian T, Huang J, Lin Z 2020 Adv. Mater. 32 2000999Google Scholar

    [9]

    Cui X, Chen Y, Zhang M, Harn Y W, Qi J, Gao L, Wang Z L, Huang J, Yang Y, Lin Z 2020 Energy Environ. Sci. 13 1743Google Scholar

    [10]

    Dunlap-Shohl W A, Zhou Y, Padture N P, Mitzi D B 2019 Chem. Rev. 119 3193Google Scholar

    [11]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991Google Scholar

    [12]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [13]

    Shi D, Adinolfi V, Comin R, Yuan, Alarousu M E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [14]

    De Quilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S 2015 Science 348 683Google Scholar

    [15]

    Prochowicz D, Franckevičius M, Cieślak A M, Zakeeruddin S M, Grätzel M, Lewiński J 2015 Mater. Chem. A 3 20772Google Scholar

    [16]

    Zhang Y N, Cui R, Xiong L H, Pang D W 2018 Nanomedicine Nanotechnology, Biol. Med. 14 1813

    [17]

    Zhang Y, Zhang X, Xu X, Munyalo J M, Liu L, Liu X, Lu M, Zhao Y 2019 Mol. Liq. 280 360Google Scholar

    [18]

    Hanul M, Maengsuk K, Seung-Un L, Hyeonwoo K, Gwisu K. Keunsu C, Hee L 2019 Science 366 749Google Scholar

    [19]

    Zhang Y, Seo S, Lim S Y, Kim Y, Kim S, Lee K, Lee S, Shin H, Cheong H, Park N 2020 ACS Energy Lett. 5 360Google Scholar

    [20]

    Heo J H, Im S H 2016 Nanoscale 8 2554Google Scholar

    [21]

    Chen Z, Türedi B, Alsalloum A, Yang C, Zheng X, Gereige I, AlSaggaf A, Mohammed O, Bakr O 2019 ACS Energy Lett. 4 1412Google Scholar

    [22]

    Yen H, Liang P, Chueh C, Yang Z, Wang H 2016 ACS Appl. Mater. Interfaces 8 14513Google Scholar

    [23]

    Cheng X, Yang S, Cao B, Tao X, Chen Z 2020 Adv. Funct. Mater. 30 1905021Google Scholar

    [24]

    Jiang X, Fu X, Ju D, Yang S, Chen Z, Tao X 2020 ACS Energy Lett. 5 1797Google Scholar

    [25]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [26]

    Kim J H, Williams S T, Cho N, Chueh C C, Jen A K Y 2015 Adv. Energy Mater. 5 1401229Google Scholar

    [27]

    Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci. 12 308Google Scholar

    [28]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N. Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar

    [29]

    He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z 2017 Nat. Commun. 8 16045Google Scholar

    [30]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [31]

    Li C, Song Z, Zhao D, Xiao C, Subedi B, Shrestha N, Junda M M, Wang C, Jiang C S, Al-Jassim M, Ellingson R J, Podraza N J, Zhu K, Yan Y 2019 Adv. Energy Mater. 9 1803135Google Scholar

    [32]

    Galatopoulos F, Savva A, Papadas I T, Choulis S A 2017 APL Mater. 5 76102Google Scholar

    [33]

    Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z G, Li Y 2018 Nat. Commun. 9 743Google Scholar

  • 图 1  FAPbI3单晶、晶体粉末和有机卤化物盐钙钛矿作为前驱体制备的钙钛矿薄膜在湿度为40%的环境下放置1天(a), 3天(b) 和5天(c)的XRD图谱

    Fig. 1.  Powder XRD patterns of FAPbI3 single crystals, crystal powders and organic halide salt perovskite as precursors prepared for perovskite thin films placed under 40% humidity for 1 day (a), 3 days (b) and 5 days (c).

    图 2  FAPbI3单晶(a)、晶体粉末(b)和有机卤化物盐(c)作为前驱体制备的钙钛矿薄膜的SEM图像

    Fig. 2.  SEM images of FAPbI3 perovskite films prepared from single crystal (a), crystal powders (b) and organic halide salt (c).

    图 3  FAPbI3单晶、晶体粉末和有机卤化物盐钙钛矿作为前驱体制备的钙钛矿薄膜的稳态 PL光谱(a)和瞬态(TRPL)光谱(b); FAPbI3单晶、晶体粉末和有机卤化物盐制备的钙钛矿薄膜的平均寿命统计(c); FTO/TiO2 ETL/钙钛矿/PCBM/Ag 结构的纯电子器空间电荷限制电流(SCLC)(d); FAPbI3单晶、晶体粉末和有机卤化物盐制备的器件的暗电流密度-电压(J-V)特性(e); FAPbI3单晶、晶体粉末和有机卤化物盐制备的器件的电化学阻抗谱(EIS)(f)

    Fig. 3.  Steady-state PL spectra (a) and time-resolved PL (TRPL) spectra (b) of perovskite films prepared from FAPbI3 single crystal, crystal powders and organic halide salt; average lifetime statistics of perovskite films of FAPbI3 single crystal, crystal powders and organic halide salt (c); space charge limited current (SCLC) plots of electron-only devices with an architecture of FTO/TiO2 ETL/Perovskite/PCBM/Ag based on FAPbI3 single crystal, crystal powders and organic halide salt perovskite (d); dark current density-voltage (J-V) characteristics of FAPbI3 single crystal, crystal powders and organic halide salt devices (e); electrochemical impedance spectroscopy (EIS) of FAPbI3 single crystal, crystal powders and organic halide salt devices (f).

    图 4  (a) 钙钛矿太阳能电池结构示意图; (b) FAPbI3单晶、晶体粉末和有机卤化物盐制备的钙钛矿太阳能电池的J-V曲线图; (c) FAPbI3单晶、晶体粉末和有机卤化物盐制备的钙钛矿太阳能电池的I-V曲线图; (d) 在没有封装的环境条件下FAPbI3单晶、晶体粉末和有机卤化物盐制备器件的稳定性; (e) FAPbI3单晶、晶体粉末和有机卤化物盐制备的钙钛矿太阳能电池PCE统计图; (f) FAPbI3单晶制备的钙钛矿太阳能电池稳态效率和电流密度

    Fig. 4.  (a) Device structure of perovskite solar cells; (b) J-V curves of perovskite solar cells prepared by FAPbI3 single crystal, crystal powders and organic halide salt; (c) I-V curves of perovskite solar cells prepared by FAPbI3 single crystal, crystal powders and organic halide salt; (d) PCE stability test of the unencapsulated devices prepared by FAPbI3 single crystal, crystal powders and organic halide salt for 14 days in ambient environment; (e) photoelectric conversion efficiency statistics of perovskite solar cells prepared by FAPbI3 single crystal, crystal powders and organic halide salt; (f) steady-state efficiency and current density of perovskite solar cells prepared by FAPbI3 single crystal.

    表 1  FAPbI3单晶、晶体粉末和有机卤化物盐钙钛矿薄膜器件的瞬态(TRPL)光谱性能参数.

    Table 1.  Time-resolved PL (TRPL) performance parameters of FAPbI3 single crystal, crystal powders and organic halide salt perovskite thin film devices.

    A1τ1/nsA2τ2/nsΤave/ns
    有机卤化物盐0.143219.530.56983.71312.715
    晶体粉末0.152020.900.56524.4013.66
    单晶0.1823112.40.44116.687.19
    下载: 导出CSV
  • [1]

    Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H 2014 Energy Environ. Sci. 7 982Google Scholar

    [2]

    De Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif 2014 Phys. Chem. Lett. 5 1035Google Scholar

    [3]

    Stranks S, Eperon G, Grancini G, Menelaou C, Alcocer M, Leijtens T, Herz L, Petrozza A, Snaith H 2013 Science 342 341

    [4]

    Chen C W, Hsiao S Y, Chen C Y, Kang H W, Huang Z Y, Lin H W 2015 Mater. Chem. 3 9152Google Scholar

    [5]

    Su H, Lin X, Wang Y, Liu X, Qin Z, Shi Q 2022 Sci. China Chem. 65 467

    [6]

    Wang B, Iocozzia J, Zhang M, Ye M, Yan S, Jin H, Wang S, Zou Z, Lin Z 2019 Chem. Soc. Rev. 48 4854Google Scholar

    [7]

    Zhang M, Cui X, Wang Y, Wang B, Ye M, Wang W, Ma C, Lin Z. 2020 Nano Energy 71 104620Google Scholar

    [8]

    Zhang M, Ye M, Wang W, Ma C, Wang S, Liu Q, Lian T, Huang J, Lin Z 2020 Adv. Mater. 32 2000999Google Scholar

    [9]

    Cui X, Chen Y, Zhang M, Harn Y W, Qi J, Gao L, Wang Z L, Huang J, Yang Y, Lin Z 2020 Energy Environ. Sci. 13 1743Google Scholar

    [10]

    Dunlap-Shohl W A, Zhou Y, Padture N P, Mitzi D B 2019 Chem. Rev. 119 3193Google Scholar

    [11]

    Lee J W, Seol D J, Cho A N, Park N G 2014 Adv. Mater. 26 4991Google Scholar

    [12]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [13]

    Shi D, Adinolfi V, Comin R, Yuan, Alarousu M E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M 2015 Science 347 519Google Scholar

    [14]

    De Quilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S 2015 Science 348 683Google Scholar

    [15]

    Prochowicz D, Franckevičius M, Cieślak A M, Zakeeruddin S M, Grätzel M, Lewiński J 2015 Mater. Chem. A 3 20772Google Scholar

    [16]

    Zhang Y N, Cui R, Xiong L H, Pang D W 2018 Nanomedicine Nanotechnology, Biol. Med. 14 1813

    [17]

    Zhang Y, Zhang X, Xu X, Munyalo J M, Liu L, Liu X, Lu M, Zhao Y 2019 Mol. Liq. 280 360Google Scholar

    [18]

    Hanul M, Maengsuk K, Seung-Un L, Hyeonwoo K, Gwisu K. Keunsu C, Hee L 2019 Science 366 749Google Scholar

    [19]

    Zhang Y, Seo S, Lim S Y, Kim Y, Kim S, Lee K, Lee S, Shin H, Cheong H, Park N 2020 ACS Energy Lett. 5 360Google Scholar

    [20]

    Heo J H, Im S H 2016 Nanoscale 8 2554Google Scholar

    [21]

    Chen Z, Türedi B, Alsalloum A, Yang C, Zheng X, Gereige I, AlSaggaf A, Mohammed O, Bakr O 2019 ACS Energy Lett. 4 1412Google Scholar

    [22]

    Yen H, Liang P, Chueh C, Yang Z, Wang H 2016 ACS Appl. Mater. Interfaces 8 14513Google Scholar

    [23]

    Cheng X, Yang S, Cao B, Tao X, Chen Z 2020 Adv. Funct. Mater. 30 1905021Google Scholar

    [24]

    Jiang X, Fu X, Ju D, Yang S, Chen Z, Tao X 2020 ACS Energy Lett. 5 1797Google Scholar

    [25]

    Kim M, Kim G H, Lee T K, Choi I W, Choi H W, Jo Y, Yoon Y J, Kim J W, Lee J, Huh D, Lee H, Kwak S K, Kim J Y, Kim D S 2019 Joule 3 2179Google Scholar

    [26]

    Kim J H, Williams S T, Cho N, Chueh C C, Jen A K Y 2015 Adv. Energy Mater. 5 1401229Google Scholar

    [27]

    Zhang Y, Kim S G, Lee D, Shin H, Park N G 2019 Energy Environ. Sci. 12 308Google Scholar

    [28]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N. Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081Google Scholar

    [29]

    He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed M A, Huang J, Lin Z 2017 Nat. Commun. 8 16045Google Scholar

    [30]

    Wu B, Fu K, Yantara N, Xing G, Sun S, Sum T C, Mathews N 2015 Adv. Energy Mater. 5 1500829Google Scholar

    [31]

    Li C, Song Z, Zhao D, Xiao C, Subedi B, Shrestha N, Junda M M, Wang C, Jiang C S, Al-Jassim M, Ellingson R J, Podraza N J, Zhu K, Yan Y 2019 Adv. Energy Mater. 9 1803135Google Scholar

    [32]

    Galatopoulos F, Savva A, Papadas I T, Choulis S A 2017 APL Mater. 5 76102Google Scholar

    [33]

    Sun C, Pan F, Bin H, Zhang J, Xue L, Qiu B, Wei Z, Zhang Z G, Li Y 2018 Nat. Commun. 9 743Google Scholar

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [2] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [3] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [4] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [5] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [6] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [7] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [8] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [9] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [10] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [11] 祁祺, 陈海峰, 洪梓凡, 刘英英, 过立新, 李立珺, 陆芹, 贾一凡. 无催化剂条件下长达毫米级的超宽Ga2O3单晶纳米带制备及特性. 物理学报, 2020, 69(16): 168101. doi: 10.7498/aps.69.20200481
    [12] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [13] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [14] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [15] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [16] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [17] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [18] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [19] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [20] 王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊. 溶剂对钙钛矿薄膜形貌和结晶性的影响研究. 物理学报, 2015, 64(3): 038403. doi: 10.7498/aps.64.038403
计量
  • 文章访问数:  5561
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-21
  • 修回日期:  2022-09-07
  • 上网日期:  2022-10-12
  • 刊出日期:  2023-01-05

/

返回文章
返回