搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型高效率和高稳定性钙钛矿/有机集成太阳电池光伏性能研究

孟婧 高博文

引用本文:
Citation:

新型高效率和高稳定性钙钛矿/有机集成太阳电池光伏性能研究

孟婧, 高博文

Photovoltaic performance of novel Perovskite/organic integrated solar cells with high efficiency and high stability

Meng Jing, Gao Bo-Wen
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 钙钛矿/有机集成太阳电池具有宽带隙的钙钛矿活性层吸收高能量的光子, 较低能量的光子可以透过钙钛矿层并被窄带隙的有机活性层吸收. 即通过引入可见光区的钙钛矿材料和近红外(near-infrared, NIR)有机半导体材料组成的体异质结(bulk heterojunction, BHJ), 在保持钙钛矿型器件高开路电压的同时, 也可以获得有机电池增强的短路电流密度. 将窄带隙有机活性层PC20BDTDPP:PC71BM直接沉积在CH3NH3PbI3上制备成钙钛矿/有机集成太阳电池. CH3NH3PbI3/PC20BDTDPP:PC71BM集成太阳电池可以扩宽钙钛矿的吸收光谱, 提高近红外光的吸收利用. 结果表明, 集成太阳电池的短路电流密度提升到23.90 mA/cm2, 光响应扩宽到920 nm, 外量子效率在可见光区达到85%, 在近红外区域(800—900 nm)亦接近55%, 器件能量转换效率高达20.30%, 最佳器件的积分电流密度和近红外区的外量子效率以及能源转换效率均是目前报导的钙钛矿/有机集成太阳电池中的最高值. 在室温25 ℃和湿度30%的环境下, 器件的效率经过350 h以后, 下降到初始效率的95%, 表现出极佳的器件稳定性. 研究结果表明: 通过材料组合和器件结构优化来提高钙钛矿太阳电池对于近红外光的吸收, 以及提升钙钛矿/有机集成太阳电池性能的策略是一种有效的方法. 为将来开发高效率和高稳定性的钙钛矿/有机集成电池提供了理论指导和实验基础.
    Perovskite/organic integrated solar cell possesses the perovskite active layer with wide band gap that can absorb high energy photons, while the lower energy photons can pass through the perovskite layer and be absorbed by the organic active layer with narrow band gap. By introducing a Bulk heterojunction (BHJ) consisting of perovskite materials and near-infrared (NIR) organic semiconductor materials in the visible light region, the enhanced short-circuit current density of organic cells can be obtained while maintaining the high open-circuit voltage of perovskite-type devices. We prepare perovskite/organic integrated solar cells by directly deposing the narrow band gap organic active layer PC20BDTDPP:PC71BM on CH3NH3PbI3. The CH3NH3PbI3/PC20BDTDPP:PC71BM integrated solar cell can widen the perovskite absorption spectra, thereby increasing the near-infrared light absorption. The results show that the short-circuit current density of the integrated solar cell increases to 23.90 mA/cm2, the optical response is widened to 920 nm, the external quantum efficiency reaches 85% in the visible region, and is close to 55% in the near infrared region (800–900 nm), and the energy conversion efficiency of the device increases up to 20.30%. The integrated current density, quantum efficiency, and energy conversion efficiency of the best device are the highest values ever reported in perovskite/organic integrated solar cells. At room temperature of 25 ℃ and humidity of 30%, the efficiency of the device decreases to 95% of the original efficiency after 350 h, showing excellent device stability. The results show that it is an effective method to improve the near-infrared absorption of perovskite solar cells and improve the performance of perovskite/organic integrated solar cells through material combination and device structure optimization. The present research provides theoretical guidance and experimental basis for the development of perovskite/ organic integrated cells with high efficiency and stability in the future.
      通信作者: 孟婧, mmmjjjcg@163.com ; 高博文, gbwhappy@163.com
    • 基金项目: 山东省自然科学基金重点项目(批准号: ZR2020KF001)、山东省泰安市科技创新发展项目(批准号: 2021GX017)、泰山学院教育教学研究专项重点项目(批准号: JY-01-202101) 、泰山学院教学改革与研究项目(批准号: JG202122)和泰山学院横向科研项目(批准号: 2022HX222)资助的课题.
      Corresponding author: Meng Jing, mmmjjjcg@163.com ; Gao Bo-Wen, gbwhappy@163.com
    • Funds: Project supported by the Key Project of Natural Science Foundation of Shandong Province, China (Grant No. ZR2020KF001), the Science and Technology Innovation Development Project of Tai 'an City of Shandong Province, China (Grant No. 2021GX017), the Special Key Project of Education and Teaching Research of Taishan University (Grant No. JY-01-202101), the Teaching Reform and Research Project of Taishan University (Grant No. JG202122) and the Horizontal Research Project of Taishan University (Grant No. 2022HX222).
    [1]

    Jeong J K, Kim M J, Seo J D, Lu H Z, Kim J Y, Grätzel M, Kim D S 2021 Nature 592 381Google Scholar

    [2]

    Zhao Y, Ma F, Qu A H, You J B 2022 Science 377 531Google Scholar

    [3]

    Liu Q S, Jiang Y F, Jin K, Qin J Q, Xu J G, Li W T, Xiong J, Liu J F, Xiao Z, Zhang X T, Ding L M 2020 Sci. Bull. 65 272Google Scholar

    [4]

    Cai Y H, Li Y, Wang R, Wu H B, Sun Y M 2021 Adv. Mater. 33 2101733Google Scholar

    [5]

    Bi P Q, Zhang S Q, Chen Z H, Hou J H 2021 Joule 5 1Google Scholar

    [6]

    Gao K, Zhu Z L, Xu B, Jen A K Y 2018 Adv. Mater. 29 1703980Google Scholar

    [7]

    Guo Q, Liu H, Shi Z Z, Wang F Z, Tan Z A 2018 Nanoscale 10 3245Google Scholar

    [8]

    Wang C Y, Bai Y M, Guo Q, Tan Z A 2019 Nanoscale 11 4035

    [9]

    Liu Y, Chen Y 2020 Adv. Mater. 32 1805843Google Scholar

    [10]

    Chen S, Yao H, Huang J, Ma W, Yan H 2018 Adv. Ener. Mater. 8 1800529Google Scholar

    [11]

    Bai Y, Lang K, Zhao C, Alsaedi A, Tan Z A 2020 Solar RRL. 4 1900280Google Scholar

    [12]

    Chen W, Sun H, Hu Q, Guo X, He Z 2019 ACS Energy Lett. 4 2535Google Scholar

    [13]

    Gu S L, Lin R, Han Q, Gao Y, Zhu J 2020 Adv. Mater. 32 1907392Google Scholar

    [14]

    Oklem G, Song X, Toppare L, Baran D, Gunbas G 2018 J. Mater. Chem. C 6 2957Google Scholar

    [15]

    Meng L, Zhang Y, Wan X, Yi H L, Cao Y, Chen Y 2018 Science 361 1094Google Scholar

    [16]

    Zhang L X, Pan X Y, Liu L, Ding L M 2022 J. Semicond. 43 030203Google Scholar

    [17]

    Yuan J, Zhang Y, Peng H, Johnson PA, Leclerc M, Cao Y, 2019 Joule 3 1140Google Scholar

    [18]

    Cui Y, Yao H F, Zhang J Q, Xian K H, Zhang T, Hong L, Wang Y M, Xu Y, Ma K Q, An C B, He C, Wei Z X, Gao F, Hou J H 2020 Adv. Mater. 32 1908205Google Scholar

    [19]

    Daboczi M, McLachlan M A, Lee K, Durrant J R, Kim J S 2020 Adv. Funct. Mater. 30 2001482Google Scholar

  • 图 1  聚合物PC20BDTDPP合成以及PC20BDTDPP:PCBM吸收光谱

    Fig. 1.  Synthesis of polymer PC20BDTDPP and absorption spectra of PC20BDTDPP : PCBM.

    图 2  钙钛矿/有机集成太阳电池的器件结构与能级搭配图

    Fig. 2.  Device structure and energy level collocation diagram of perovskite/organic integrated solar cell.

    图 3  钙钛矿/有机集成太阳电池有机层和钙钛矿层薄膜吸收光谱

    Fig. 3.  Absorption spectra of organic layer and perovskite layer films of perovskite/organic integrated solar cell.

    图 4  钙钛矿/有机集成太阳电池薄膜的AFM和SEM测试

    Fig. 4.  AFM and SEM of perovskite/organic integrated solar cell films.

    图 5  钙钛矿/有机集成太阳电池、单结电池光伏性能曲线以及迟滞现象

    Fig. 5.  Photovoltaic performance curves and hysteresis of perovskite/organic integrated solar cells and single junction cells.

    图 6  钙钛矿/有机集成太阳电池和相应的单结电池外量子效率和稳定性测试曲线

    Fig. 6.  External quantum efficiency and stability test curves of perovskite/organic integrated solar cells and corresponding single-junction cells.

    表 1  钙钛矿/有机集成太阳电池和相应的单结电池光伏性能参数

    Table 1.  Photovoltaic performance parameters of perovskite/organic integrated solar cells and corresponding single-junction cells.

    Voc/VJsc/(mA·cm–2)FF/%PCE/%
    PC20BDTDPP:PC71BM0.9115.02669.21
    CH3NH3PbI31.0720.016814.56
    CH3NH3PbI3/PC20BDTDPP:PC71BM(正扫)1.1823.907220.30
    CH3NH3PbI3/PC20BDTDPP:PC71BM(反扫)1.1723.217119.28
    下载: 导出CSV
  • [1]

    Jeong J K, Kim M J, Seo J D, Lu H Z, Kim J Y, Grätzel M, Kim D S 2021 Nature 592 381Google Scholar

    [2]

    Zhao Y, Ma F, Qu A H, You J B 2022 Science 377 531Google Scholar

    [3]

    Liu Q S, Jiang Y F, Jin K, Qin J Q, Xu J G, Li W T, Xiong J, Liu J F, Xiao Z, Zhang X T, Ding L M 2020 Sci. Bull. 65 272Google Scholar

    [4]

    Cai Y H, Li Y, Wang R, Wu H B, Sun Y M 2021 Adv. Mater. 33 2101733Google Scholar

    [5]

    Bi P Q, Zhang S Q, Chen Z H, Hou J H 2021 Joule 5 1Google Scholar

    [6]

    Gao K, Zhu Z L, Xu B, Jen A K Y 2018 Adv. Mater. 29 1703980Google Scholar

    [7]

    Guo Q, Liu H, Shi Z Z, Wang F Z, Tan Z A 2018 Nanoscale 10 3245Google Scholar

    [8]

    Wang C Y, Bai Y M, Guo Q, Tan Z A 2019 Nanoscale 11 4035

    [9]

    Liu Y, Chen Y 2020 Adv. Mater. 32 1805843Google Scholar

    [10]

    Chen S, Yao H, Huang J, Ma W, Yan H 2018 Adv. Ener. Mater. 8 1800529Google Scholar

    [11]

    Bai Y, Lang K, Zhao C, Alsaedi A, Tan Z A 2020 Solar RRL. 4 1900280Google Scholar

    [12]

    Chen W, Sun H, Hu Q, Guo X, He Z 2019 ACS Energy Lett. 4 2535Google Scholar

    [13]

    Gu S L, Lin R, Han Q, Gao Y, Zhu J 2020 Adv. Mater. 32 1907392Google Scholar

    [14]

    Oklem G, Song X, Toppare L, Baran D, Gunbas G 2018 J. Mater. Chem. C 6 2957Google Scholar

    [15]

    Meng L, Zhang Y, Wan X, Yi H L, Cao Y, Chen Y 2018 Science 361 1094Google Scholar

    [16]

    Zhang L X, Pan X Y, Liu L, Ding L M 2022 J. Semicond. 43 030203Google Scholar

    [17]

    Yuan J, Zhang Y, Peng H, Johnson PA, Leclerc M, Cao Y, 2019 Joule 3 1140Google Scholar

    [18]

    Cui Y, Yao H F, Zhang J Q, Xian K H, Zhang T, Hong L, Wang Y M, Xu Y, Ma K Q, An C B, He C, Wei Z X, Gao F, Hou J H 2020 Adv. Mater. 32 1908205Google Scholar

    [19]

    Daboczi M, McLachlan M A, Lee K, Durrant J R, Kim J S 2020 Adv. Funct. Mater. 30 2001482Google Scholar

  • [1] 刘举, 曹一伟, 吕全江, 杨天鹏, 米亭亭, 王小文, 刘军林. 超晶格电子阻挡层周期数对AlGaN基深紫外发光二极管性能的影响. 物理学报, 2024, 73(12): 128503. doi: 10.7498/aps.73.20231969
    [2] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性. 物理学报, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [3] 孟婧, 高博文. 基于聚合物非富勒烯体系PM6:Y6的钙钛矿/有机集成太阳电池光伏性能优化. 物理学报, 2023, 72(12): 128801. doi: 10.7498/aps.72.20230081
    [4] 陶聪, 王敬民, 牛美玲, 朱琳, 彭其明, 王建浦. 非磁性发光材料的磁场效应: 从有机半导体到卤化物钙钛矿. 物理学报, 2022, 71(6): 068502. doi: 10.7498/aps.71.20211872
    [5] 卢辉东, 韩红静, 刘杰. 有机铅碘钙钛矿太阳电池结构优化及光电性能计算. 物理学报, 2021, 70(16): 168802. doi: 10.7498/aps.70.20210134
    [6] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [7] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性. 物理学报, 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [8] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 物理学报, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [9] 陈亮, 张利伟, 陈永生. 无铅和少铅的有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2018, 67(2): 028801. doi: 10.7498/aps.67.20171956
    [10] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] 李雪, 王亮, 熊建桥, 邵秋萍, 蒋荣, 陈淑芬. 金纳米四面体增强有机太阳电池光吸收及光伏性能研究. 物理学报, 2018, 67(24): 247201. doi: 10.7498/aps.67.20181502
    [12] 曹宇, 薛磊, 周静, 王义军, 倪牮, 张建军. 微晶硅锗薄膜作为近红外光吸收层在硅基薄膜太阳电池中的应用. 物理学报, 2016, 65(14): 146801. doi: 10.7498/aps.65.146801
    [13] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [14] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展. 物理学报, 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [15] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [16] 彭勇, 罗昔贤, 付姚, 邢明铭. 热分解含硫金属有机配合物制备近红外PbS量子点. 物理学报, 2013, 62(20): 208105. doi: 10.7498/aps.62.208105
    [17] 杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 有机发光二极管光取出技术研究进展. 物理学报, 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [18] 马凤英, 苏建坡, 郭茂田, 池泉, 陈明, 余振芳. 微腔面发射器件外量子效率研究. 物理学报, 2011, 60(6): 064203. doi: 10.7498/aps.60.064203
    [19] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [20] 林瀚, 刘守, 张向苏, 刘宝林, 任雪畅. 全息技术制作二维光子晶体蓝宝石衬底提高发光二极管外量子效率. 物理学报, 2009, 58(2): 959-963. doi: 10.7498/aps.58.959
计量
  • 文章访问数:  5281
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 修回日期:  2022-08-25
  • 上网日期:  2022-10-13
  • 刊出日期:  2023-01-05

/

返回文章
返回