搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿量子点材料中极化子光吸收效应

冯爽 马皓楠 白静 马新军 孙勇

引用本文:
Citation:

钙钛矿量子点材料中极化子光吸收效应

冯爽, 马皓楠, 白静, 马新军, 孙勇

Polaron optical absorption effect in perovskite quantum dot materials

FENG Shuang, MA Haonan, BAI Jing, MA Xinjun, SUN Yong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 钙钛矿量子点作为一种新兴的纳米材料, 在光电转换领域展现出巨大的应用潜力, 其中极化子在光谱特性和光电性能方面发挥着关键作用. 本文通过幺正变换和Larsen方法, 建立了极化子光吸收模型, 揭示了钙钛矿量子点中极化子跃迁光吸收随电子-声子耦合常数和有效质量的变化规律. 这一结果阐明了极化子光吸收的物理机制, 为钙钛矿量子点材料性能的优化提供了新的思路和方法, 同时拓展了其在光电探测器、发光二极管以及太阳能电池等领域的应用前景.
    Perovskite quantum dots, as an emerging class of nanomaterial, have demonstrated significant potential applications in the field of optoelectronic energy conversion due to their unique optoelectronic properties. In particular, polarons play a crucial role in the optical and optoelectronic performance of perovskite quantum dots. Polaron formation, which involves the coupling of electrons with lattice phonons, can induce charge shielding effect and localization effect, thereby protecting charge carriers from scattering and recombiningd. This leads to longer carrier lifetimes and diffusion lengths, thereby enhancing the efficiency of optoelectronic energy conversion. In this study, a polaronic light absorption model is established using unitary transformation and the Larsen method, revealing the dependence of polaronic transition optical absorption on the electron-phonon coupling constant and effective mass in perovskite quantum dots. The results indicate that the vibration frequency, excited-state energy of polarons, and the transition spectral line frequency are closely related to the electron-phonon coupling strength and effective mass. Specifically, as the electron-phonon coupling constant increases, the vibration frequency and excited-state energy of polarons decrease, while the transition spectral line frequency increases. This finding not only elucidates the physical mechanism of polaronic optical absorption but also provides new insights and methods for optimizing the performance of perovskite quantum dot materials. Moreover, this research expands the application scope of perovskite quantum dots in fields such as photodetectors, light-emitting diodes (LEDs), and solar cells. For instance, in LEDs, the high photoluminescence quantum yield and tunable bandgap of perovskite quantum dots make them ideal luminescent materials. In solar cells, their excellent optoelectronic conversion efficiency and carrier transport properties can significantly enhance device performance. By further optimizing polaron-related characteristics, it is expected that the performance of perovskite quantum dots in these applications can be further improved.
  • 图 1  钙钛矿量子点极化子光吸收示意图

    Fig. 1.  Schematic diagram of perovskite quantum dot polaron optical absorption.

    图 2  钙钛矿材料光吸收系数

    Fig. 2.  Absorption optical coefficient of perovskite materials

    图 3  极化子由基态能级跃迁到第一个朗道能级的吸收系数

    Fig. 3.  Absorption coefficient of the polaron transition from the ground state level to the first Landau level.

    图 4  极化子吸收一个光子由基态能级跃迁到一个声子能级的吸收系数

    Fig. 4.  Absorption coefficient of a photon transitioning from the ground state energy level to a phonon energy level.

    表 1  钙钛矿各晶体的参数

    Table 1.  Parameters of each perovskite crystal.

    参数MAPbCl3MAPbBr3MAPbI3
    耦合常数α2.171.691.72
    有效质量m*0.2m00.117m00.104m0
    下载: 导出CSV
  • [1]

    Attfield J P, Lightfoot P, Morris R E 2015 Dalton Trans. 44 10541Google Scholar

    [2]

    Bai Y, Hao M M, Ding S S, Chen P, Wang L Z 2022 Adv. Mater. 34 2105958Google Scholar

    [3]

    Park A, Goudarzi A, Yaghmaie P, Thomas V J, Maine E 2022 Nat. Nanotechnol. 17 802

    [4]

    Dong X, Shen Y, Wang F M, He Z M, Zhao Y Z, Miao Z C, Wu Z B 2025 Small 2412809 DOI: 10.1002/smll.202412809

    [5]

    Shi Y, Berry J J, Zhang F 2024 ACS Energy Lett. 9 1305Google Scholar

    [6]

    Yang W Q, Su R, Luo D Y, Hu Q, Zhang F, Xu Z J, Wang Z P, Tang J L, Lv Z, Yang X Y, Tu Y G, Zhang W, Zhong H Z, Gong Q H, Russell T P, Zhu R 2020 Nano Energy 67 104189Google Scholar

    [7]

    Liu L, Najar A, Wang K, Du M, Liu S (Frank) 2022 Adv. Sci. 9 2104577Google Scholar

    [8]

    Akin S, Altintas Y, Mutlugun E, Sonmezoglu S 2019 Nano Energy 60 557Google Scholar

    [9]

    Chen J X, Jia D L, Johansson E M J, Hagfeldt A, Zhang X L 2018 Energy Environ. Sci. 11 772Google Scholar

    [10]

    Wang Y, Duan C H, Zhang X L, Sun J G, Ling X F, Shi J W, Hu L, Zhou Z Z, Wu X X, Han W, Liu X F, Cazorla C, Chu D W, Huang S J, Wu T, Yuan J Y, Ma W L 2022 Adv. Funct. Mater. 32 2108615Google Scholar

    [11]

    Wang J, Gao S, Duan X M, Yin W J 2024 Acta Phys. Sin. 73 063101 (in Chiness) [王静, 高姗, 段香梅, 尹万健 2024 物理学报 73 063101]Google Scholar

    Wang J, Gao S, Duan X M, Yin W J 2024 Acta Phys. Sin. 73 063101 (in Chiness)Google Scholar

    [12]

    Hao M M, Ding S S, Gaznaghi S, Cheng H Y, Wang L Z 2024 ACS Energy Lett. 9 308Google Scholar

    [13]

    Wang H C, Bao Z, Tsai H Y, Tang A C, Liu R S 2018 Small 14 1702433Google Scholar

    [14]

    Yang J N, Chen T, Ge J, Wang J J, Yin Y C, Lan Y F, Ru X C, Ma Z Y, Zhang Q, Yao H B 2021 J. Am. Chem. Soc. 143 19928Google Scholar

    [15]

    Liu Y, Dong Y, Zhu T, Ma D, Proppe A, Chen B, Zheng C, Hou Y, Lee S, Sun B, Jung E H, Yuan F, Wang Y K, Sagar L K, Hoogland S, García De Arquer F P, Choi M J, Singh K, Kelley S O, Voznyy O, Lu Z H, Sargent E H 2021 J. Am. Chem. Soc. 143 15606Google Scholar

    [16]

    He H Y, Mei S L, Wen Z Q, Yang D, Yang B B, Zhang W L, Xie F X, Xing G C, Guo R Q 2022 Small 18 2103527Google Scholar

    [17]

    Le Q V, Hong K, Jang H W, Kim S Y 2018 Adv. Electron. Mater. 4 1800335Google Scholar

    [18]

    Cardenas-Morcoso D, Gualdrón-Reyes A F, Ferreira Vitoreti A B, García-Tecedor M, Yoon S J, Solis De La Fuente M, Mora-Seró I, Gimenez S 2019 J. Phys. Chem. Lett. 10 630Google Scholar

    [19]

    Xiao Z J, Li J L, Mai X Y, Yang J L, Zhu M S 2024 Catal. Sci. Technol. 14 4432Google Scholar

    [20]

    Geng X S, Wang F W, Tian H, Feng Q X, Zhang H N, Liang R R, Shen Y, Ju Z Y, Gou G Y, Deng N Q, Li Y T, Ren J, Xie D, Yang Y, Ren T L 2020 ACS Nano 14 2860Google Scholar

    [21]

    Zhang Y H, Wu G H, Liu F, Ding C, Zou Z G, Shen Q 2020 Chem. Soc. Rev. 49 49Google Scholar

    [22]

    Wang S, Zhao Q, Hazarika A, Li S M, Wu Y, Zhai Y X, Chen X H, Luther J M, Li G R 2023 Nat. Commun. 14 2216Google Scholar

    [23]

    Kim Y, Yassitepe E, Voznyy O, Comin R, Walters G, Gong X, Kanjanaboos P, Nogueira A F, Sargent E H 2015 ACS Appl. Mater. Interfaces 7 25007Google Scholar

    [24]

    Chen J, Du W N, Shi J W, Li M L, Wang Y, Zhang Q, Liu X F 2020 InfoMat 2 170Google Scholar

    [25]

    Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Shen Q 2017 ACS Nano 11 10373Google Scholar

    [26]

    Bujalance C, Caliò L, Dirin D N, Tiede D O, Galisteo-López J F, Feist J, García-Vidal F J, Kovalenko M V, Míguez H 2024 ACS Nano 18 4922Google Scholar

    [27]

    尹博钊, 黄雄健, 董国平 2023 发光学报44 0347

    Yin B Z, Huang X J, Dong G P 2023 J. Luminescence 44 0347

    [28]

    高雯欢, 丁济可, 马全兴, 苏郁清, 宋宏伟, 陈聪 2024 化学进展 36 187203

    Gao W H, Ding J K, Ma Q X, Su Y Q, Song H W, Chen C 2024 Prog. Chem. 36 187203

    [29]

    Liang J H, Chen D, Yao X, Zhang K X, Qu F L, Qin L S, Huang Y X, Li J H 2020 Small 16 1903398Google Scholar

    [30]

    乐亚坤, 黄雄健, 董国平 2024 硅酸盐学报 52 2659

    Le Y K, Huang X J, Dong G P 2024 J. Chin. Ceramic So. 52 2659

    [31]

    王静, 高姗, 段香梅, 尹万健 2024 物理学报 73 063101Google Scholar

    Wang J, Gao S, Duan X M, Yin W J 2024 Acta. Phys. Sin. 73 063101Google Scholar

    [32]

    Wang Y, Zha Y, Yang Y, Liu C, Di Y, Cao G, Wei S, Chen Z, Gan Z 2023 Sci. China Technol. Sci. 66 2735Google Scholar

    [33]

    曾平君, 金旭东, 彭钰博, 赵敏, 高志鹏, 李晓娜, 冀健龙, 陈维毅 2023 生物医学工程学杂志 40 11045Google Scholar

    Zeng P J, Jin X D, Peng Y B, Zhao M, Gao Z P, Li X N, Ji J L, Chen W Y 2023 J. Biomed. Eng. 40 11045Google Scholar

    [34]

    武虹乐, 郭锐, 迟涵文, 唐永和, 宋思睿, 葛恩香, 林伟英 2023 化学学报 81 040138

    Wu H L, Guo R, Chi H W, Tang Y H, Song S R, Ge E X, Lin W Y 2023 Acta. Chim. Sin. 81 040138

    [35]

    郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮 2018 物理学报 67 118502Google Scholar

    Zheng J J, Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T, Wei W 2018 Acta. Phys. Sin. 67 118502Google Scholar

    [36]

    高雯欢, 丁济可, 马全兴, 苏郁清, 宋宏伟, 陈聪 2024 化学进展 36 187203

    Gao W H, Ding J K, Ma Q X, Su Y Q, Song H W, Chen C 2024 Prog. Chem. 36 187203

  • [1] 王东智, 张益军, 李诗曼, 童泽昊, 唐嵩, 石峰, 焦岗成, 程宏昌, 富容国, 钱芸生, 曾玉刚. 532 nm响应增强的AlGaAs光电阴极. 物理学报, doi: 10.7498/aps.73.20240253
    [2] 赵辛未, 吕俊鹏, 倪振华. 铅卤钙钛矿法布里-珀罗谐振腔激光器. 物理学报, doi: 10.7498/aps.70.20201302
    [3] 姚文乾, 孙健哲, 陈建毅, 郭云龙, 武斌, 刘云圻. 二维平面和范德瓦耳斯异质结的可控制备与光电应用. 物理学报, doi: 10.7498/aps.70.20201419
    [4] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, doi: 10.7498/aps.69.20191645
    [5] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.67.20180129
    [6] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势. 物理学报, doi: 10.7498/aps.66.218102
    [7]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, doi: 10.7498/aps.66.187102
    [8] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, doi: 10.7498/aps.64.186301
    [9] 武振华, 李华, 严亮星, 刘炳灿, 田强. 分数维方法研究GaAs薄膜中的极化子. 物理学报, doi: 10.7498/aps.62.097302
    [10] 刘炳灿, 李华, 严亮星, 孙慧, 田强. GaAs薄膜的有效量子限制长度及其极化子特性. 物理学报, doi: 10.7498/aps.62.197302
    [11] 伊丁, 秦伟, 解士杰. 钙钛矿锰氧化物中的极化子研究. 物理学报, doi: 10.7498/aps.61.207101
    [12] 王启文, 红兰. 二维量子点中极化子的自旋弛豫. 物理学报, doi: 10.7498/aps.61.017107
    [13] 赵翠兰, 丛银川. 球壳量子点中极化子和量子比特的声子效应. 物理学报, doi: 10.7498/aps.61.186301
    [14] 任学藻, 贺树, 丛红璐, 王旭文. 两格点两电子Hubbard-Holstein模型极化子的量子纠缠特性. 物理学报, doi: 10.7498/aps.61.124207
    [15] 赵翠兰, 高宽云. 声子和磁场对量子环中极化子性质的影响. 物理学报, doi: 10.7498/aps.59.4857
    [16] 任学藻, 黄书文, 廖旭, 汪克林. 有限格点一维Holstein极化子研究. 物理学报, doi: 10.7498/aps.58.2680
    [17] 熊大元, 李志锋, 陈效双, 李 宁, 甄红楼, 陆 卫. 用金属小球进行长波量子阱红外探测器的光耦合. 物理学报, doi: 10.7498/aps.56.6648
    [18] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级. 物理学报, doi: 10.7498/aps.56.4856
    [19] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, doi: 10.7498/aps.55.5172
    [20] 秦 华, 傅汝廉, 郜洪云, 刘 娟, 史心刚. 三能级固体激光介质对抽运光吸收的理论研究. 物理学报, doi: 10.7498/aps.54.1587
计量
  • 文章访问数:  59
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-22
  • 修回日期:  2025-02-26
  • 上网日期:  2025-04-23

/

返回文章
返回