-
Perovskite quantum dots, as an emerging class of nanomaterial, have demonstrated significant potential applications in the field of optoelectronic energy conversion due to their unique optoelectronic properties. In particular, polarons play a crucial role in the optical and optoelectronic performance of perovskite quantum dots. Polaron formation, which involves the coupling of electrons with lattice phonons, can induce charge shielding effect and localization effect, thereby protecting charge carriers from scattering and recombiningd. This leads to longer carrier lifetimes and diffusion lengths, thereby enhancing the efficiency of optoelectronic energy conversion. In this study, a polaronic light absorption model is established using unitary transformation and the Larsen method, revealing the dependence of polaronic transition optical absorption on the electron-phonon coupling constant and effective mass in perovskite quantum dots. The results indicate that the vibration frequency, excited-state energy of polarons, and the transition spectral line frequency are closely related to the electron-phonon coupling strength and effective mass. Specifically, as the electron-phonon coupling constant increases, the vibration frequency and excited-state energy of polarons decrease, while the transition spectral line frequency increases. This finding not only elucidates the physical mechanism of polaronic optical absorption but also provides new insights and methods for optimizing the performance of perovskite quantum dot materials. Moreover, this research expands the application scope of perovskite quantum dots in fields such as photodetectors, light-emitting diodes (LEDs), and solar cells. For instance, in LEDs, the high photoluminescence quantum yield and tunable bandgap of perovskite quantum dots make them ideal luminescent materials. In solar cells, their excellent optoelectronic conversion efficiency and carrier transport properties can significantly enhance device performance. By further optimizing polaron-related characteristics, it is expected that the performance of perovskite quantum dots in these applications can be further improved.
-
Keywords:
- perovskite quantum dots /
- optoelectronic devices /
- polaron /
- optical absorption
-
表 1 钙钛矿各晶体的参数
Table 1. Parameters of each perovskite crystal.
参数 MAPbCl3 MAPbBr3 MAPbI3 耦合常数α 2.17 1.69 1.72 有效质量m* 0.2m0 0.117m0 0.104m0 -
[1] Attfield J P, Lightfoot P, Morris R E 2015 Dalton Trans. 44 10541
Google Scholar
[2] Bai Y, Hao M M, Ding S S, Chen P, Wang L Z 2022 Adv. Mater. 34 2105958
Google Scholar
[3] Park A, Goudarzi A, Yaghmaie P, Thomas V J, Maine E 2022 Nat. Nanotechnol. 17 802
[4] Dong X, Shen Y, Wang F M, He Z M, Zhao Y Z, Miao Z C, Wu Z B 2025 Small 2412809 DOI: 10.1002/smll.202412809
[5] Shi Y, Berry J J, Zhang F 2024 ACS Energy Lett. 9 1305
Google Scholar
[6] Yang W Q, Su R, Luo D Y, Hu Q, Zhang F, Xu Z J, Wang Z P, Tang J L, Lv Z, Yang X Y, Tu Y G, Zhang W, Zhong H Z, Gong Q H, Russell T P, Zhu R 2020 Nano Energy 67 104189
Google Scholar
[7] Liu L, Najar A, Wang K, Du M, Liu S (Frank) 2022 Adv. Sci. 9 2104577
Google Scholar
[8] Akin S, Altintas Y, Mutlugun E, Sonmezoglu S 2019 Nano Energy 60 557
Google Scholar
[9] Chen J X, Jia D L, Johansson E M J, Hagfeldt A, Zhang X L 2018 Energy Environ. Sci. 11 772
Google Scholar
[10] Wang Y, Duan C H, Zhang X L, Sun J G, Ling X F, Shi J W, Hu L, Zhou Z Z, Wu X X, Han W, Liu X F, Cazorla C, Chu D W, Huang S J, Wu T, Yuan J Y, Ma W L 2022 Adv. Funct. Mater. 32 2108615
Google Scholar
[11] Wang J, Gao S, Duan X M, Yin W J 2024 Acta Phys. Sin. 73 063101 (in Chiness) [王静, 高姗, 段香梅, 尹万健 2024 物理学报 73 063101]
Google Scholar
Wang J, Gao S, Duan X M, Yin W J 2024 Acta Phys. Sin. 73 063101 (in Chiness)
Google Scholar
[12] Hao M M, Ding S S, Gaznaghi S, Cheng H Y, Wang L Z 2024 ACS Energy Lett. 9 308
Google Scholar
[13] Wang H C, Bao Z, Tsai H Y, Tang A C, Liu R S 2018 Small 14 1702433
Google Scholar
[14] Yang J N, Chen T, Ge J, Wang J J, Yin Y C, Lan Y F, Ru X C, Ma Z Y, Zhang Q, Yao H B 2021 J. Am. Chem. Soc. 143 19928
Google Scholar
[15] Liu Y, Dong Y, Zhu T, Ma D, Proppe A, Chen B, Zheng C, Hou Y, Lee S, Sun B, Jung E H, Yuan F, Wang Y K, Sagar L K, Hoogland S, García De Arquer F P, Choi M J, Singh K, Kelley S O, Voznyy O, Lu Z H, Sargent E H 2021 J. Am. Chem. Soc. 143 15606
Google Scholar
[16] He H Y, Mei S L, Wen Z Q, Yang D, Yang B B, Zhang W L, Xie F X, Xing G C, Guo R Q 2022 Small 18 2103527
Google Scholar
[17] Le Q V, Hong K, Jang H W, Kim S Y 2018 Adv. Electron. Mater. 4 1800335
Google Scholar
[18] Cardenas-Morcoso D, Gualdrón-Reyes A F, Ferreira Vitoreti A B, García-Tecedor M, Yoon S J, Solis De La Fuente M, Mora-Seró I, Gimenez S 2019 J. Phys. Chem. Lett. 10 630
Google Scholar
[19] Xiao Z J, Li J L, Mai X Y, Yang J L, Zhu M S 2024 Catal. Sci. Technol. 14 4432
Google Scholar
[20] Geng X S, Wang F W, Tian H, Feng Q X, Zhang H N, Liang R R, Shen Y, Ju Z Y, Gou G Y, Deng N Q, Li Y T, Ren J, Xie D, Yang Y, Ren T L 2020 ACS Nano 14 2860
Google Scholar
[21] Zhang Y H, Wu G H, Liu F, Ding C, Zou Z G, Shen Q 2020 Chem. Soc. Rev. 49 49
Google Scholar
[22] Wang S, Zhao Q, Hazarika A, Li S M, Wu Y, Zhai Y X, Chen X H, Luther J M, Li G R 2023 Nat. Commun. 14 2216
Google Scholar
[23] Kim Y, Yassitepe E, Voznyy O, Comin R, Walters G, Gong X, Kanjanaboos P, Nogueira A F, Sargent E H 2015 ACS Appl. Mater. Interfaces 7 25007
Google Scholar
[24] Chen J, Du W N, Shi J W, Li M L, Wang Y, Zhang Q, Liu X F 2020 InfoMat 2 170
Google Scholar
[25] Liu F, Zhang Y H, Ding C, Kobayashi S, Izuishi T, Nakazawa N, Toyoda T, Ohta T, Hayase S, Minemoto T, Yoshino K, Dai S Y, Shen Q 2017 ACS Nano 11 10373
Google Scholar
[26] Bujalance C, Caliò L, Dirin D N, Tiede D O, Galisteo-López J F, Feist J, García-Vidal F J, Kovalenko M V, Míguez H 2024 ACS Nano 18 4922
Google Scholar
[27] 尹博钊, 黄雄健, 董国平 2023 发光学报44 0347
Yin B Z, Huang X J, Dong G P 2023 J. Luminescence 44 0347
[28] 高雯欢, 丁济可, 马全兴, 苏郁清, 宋宏伟, 陈聪 2024 化学进展 36 187203
Gao W H, Ding J K, Ma Q X, Su Y Q, Song H W, Chen C 2024 Prog. Chem. 36 187203
[29] Liang J H, Chen D, Yao X, Zhang K X, Qu F L, Qin L S, Huang Y X, Li J H 2020 Small 16 1903398
Google Scholar
[30] 乐亚坤, 黄雄健, 董国平 2024 硅酸盐学报 52 2659
Le Y K, Huang X J, Dong G P 2024 J. Chin. Ceramic So. 52 2659
[31] 王静, 高姗, 段香梅, 尹万健 2024 物理学报 73 063101
Google Scholar
Wang J, Gao S, Duan X M, Yin W J 2024 Acta. Phys. Sin. 73 063101
Google Scholar
[32] Wang Y, Zha Y, Yang Y, Liu C, Di Y, Cao G, Wei S, Chen Z, Gan Z 2023 Sci. China Technol. Sci. 66 2735
Google Scholar
[33] 曾平君, 金旭东, 彭钰博, 赵敏, 高志鹏, 李晓娜, 冀健龙, 陈维毅 2023 生物医学工程学杂志 40 11045
Google Scholar
Zeng P J, Jin X D, Peng Y B, Zhao M, Gao Z P, Li X N, Ji J L, Chen W Y 2023 J. Biomed. Eng. 40 11045
Google Scholar
[34] 武虹乐, 郭锐, 迟涵文, 唐永和, 宋思睿, 葛恩香, 林伟英 2023 化学学报 81 040138
Wu H L, Guo R, Chi H W, Tang Y H, Song S R, Ge E X, Lin W Y 2023 Acta. Chim. Sin. 81 040138
[35] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮 2018 物理学报 67 118502
Google Scholar
Zheng J J, Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T, Wei W 2018 Acta. Phys. Sin. 67 118502
Google Scholar
[36] 高雯欢, 丁济可, 马全兴, 苏郁清, 宋宏伟, 陈聪 2024 化学进展 36 187203
Gao W H, Ding J K, Ma Q X, Su Y Q, Song H W, Chen C 2024 Prog. Chem. 36 187203
计量
- 文章访问数: 59
- PDF下载量: 4
- 被引次数: 0