搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限深抛物势量子盘中极化子的激发态性质

赵翠兰 王丽丽 赵丽丽

引用本文:
Citation:

有限深抛物势量子盘中极化子的激发态性质

赵翠兰, 王丽丽, 赵丽丽

Properties of excited state of polaron in quantum disk in finite depth parabolic potential well

Zhao Cui-Lan, Wang Li-Li, Zhao Li-Li
PDF
导出引用
  • 量子点作为一种重要的低维纳米结构, 近年来在单光子光源和新型量子点单光子探测器的研究引起了人们的广泛关注, 对各种势阱中量子点性质的研究已取得了重要成果. 但是大多理论研究都局限于无限深势阱, 而有限深势阱更具有实际意义. 利用平面波展开、幺正变换和变分相结合的方法研究了有限深势阱中极化子激发态能量及激发能随势阱形状和量子盘大小的变化规律. 数值计算结果表明: 极化子的激发态能量、激发能随势垒高度或宽度的增大而增大, 原因是势垒愈高、愈宽, 电子穿透势垒的可能性愈小, 电子在阱内运动的可能性愈大, 进而导致极化子的激发态能量和激发能均随势垒高度和宽度的增大而增大; 极化子的激发态能量和激发能随量子盘半径的增大而减小, 表明量子盘具有显著的量子尺寸效应; 极化子的激发态能量随有效受限长度的增加而减小, 原因是有效受限长度愈大, 有效受限强度愈小, 电子受到的束缚愈弱、振动愈慢、势能愈小, 进而导致基态能量、激发态能量减小; 同时由于激发态能量较基态能量减小慢, 使得激发能随之增加. 研究结果对量子点的应用具有一定的理论指导意义.
    Studies of single quantum state measurement and the relevant physics are very important for the fields of quantum information and quantum coupution. In recent years, quantum dots as information carrier have become a hotpoint of research. The study on quantum dot properties has atracted a lot of attetion and made a series of progress.#br#In this paper, we formulate a theoretical method that can be used to investigate polaron properties in low-dimensional structures in finite depth potential well. We assume that an electron in a quantum disk which is in other medium is in parabolic potential field, but the effect of the medium on the electron in quantum disk is equivalent to a potential barrier with height V1 and width d. By expanding the finite height potential barrier as plane waves and Lee-Low-Pines unitary transformation for Hamiltonian, as well as variation for expectation value of Hamiltonian where trial wave functions are obtained by solving the energy eigen-value equation, the ground state energy, the first excited state energy, and excitation energy of polaron are drived.#br#Numerical calculation by using polaron unit, numerical results indicate that the first excited state energy and excitation energy of polaron increase with increasing the width or height of the potential barrier, because the probability of electron penetrating potential barrier will decrease as the width or height of potential barrier increases, so that electronic energy, the first excited state energy and excitation energy of polaron all increase. Numerical results also show that energies mentioned earlier decrease with increasing radius of quantum disk, which illustrates that the quantum disk has obvious quantum size effect.#br#It is also found from numerical results that the first excited state energy of polaron decreases with increasing effective confine length, it falls quickly when effective confine length is less than 0.3 and is a little change when effective confine length is more than 0.3. The longer the effective confine length, the more weakly the electron is bounded and the smaller the potential energy is, so that the first excited state energy of polaron decreases. Oppositely, the excitation energy of polaron increases with increasing effective confine length, because the first excited state energy decreases more slowly than the ground state energy.
      通信作者: 赵翠兰, nmdzcl@163.com
    • 基金项目: 国家自然科学基金(批准号: 11464034)和内蒙古高校科研基金(批准号: NJzy13174)资助的课题.
      Corresponding author: Zhao Cui-Lan, nmdzcl@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11464034) and the Higher University Science Research Foundation of Inner Mongolia, China (Grant No. NJzy13174).
    [1]

    Wang H Y, Dou X M, Ni H Q, Niu Z C, Sun B Q 2014 Acta Phys. Sin. 63 027801(in Chinese) [王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权 2014 物理学报 63 027801]

    [2]

    Wang H P, Wang G L, Ni H Q, Xu Y Q, Niu Z C, Gao F Q 2013 Acta Phys. Sin. 62 207303(in Chinese) [王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐 2013 物理学报 62 207303]

    [3]

    Zhou Q C, Di Z Y 2013 Acta Phys. Sin. 62 134206(in Chinese) [周青春, 狄尊燕 2013 物理学报 62 134206]

    [4]

    Li S S, Xia J B 2001 J. Appl. Phys. 89 3434

    [5]

    Chen C Y, Lin D L, Jin P W, Zhang S Q, Chen R 1994 Phys. Rev. B 49 13680

    [6]

    Thilagam A, Lohe M A 2005 Physica E 25 625

    [7]

    Li Y L, Xiao J L 2005 Chin. J. Lumin. 26 436 (in Chinese) [李亚利, 肖景林 2005 发光学报 26 436]

    [8]

    Jian R H, Zhao C L 2008 Chin. J. Lumin. 29 215 [简荣华, 赵翠兰 2008 发光学报 29 215]

    [9]

    Filikhin I, Deyneka E, Vlahovic B 2004 Modelling Simul. Mater. Sci. Eng. 12 1121

    [10]

    Filikhin I, Suslov V M, Vlahovic B 2006 Physica E 33 349

    [11]

    Chang K, Xia J B 1998 Phys. Rev. B 57 9780

    [12]

    Chang K, Lou W K 2011 Phys. Rev. Lett. 106 206802

    [13]

    Fang D F, Ding X, Dai R C, Zhao Z, Wang Z P, Zhang Z M 2014 Chin. Phys. B 23 127804

    [14]

    Bagheri Tagani M, Rahimpour Soleimani H 2014 Chin. Phys. B 23 057302

    [15]

    Kruchinin S Y, Rukhlenko I D, Baimuratov A S, Leonov M Y, Turkov V K, Gun’ko Y K, Baranov A V, Fedorov A V 2015 J. Appl. Phys. 117 014306

    [16]

    Liu Y Y, Petersson K D, Stehlik J, Taylor J M, Petta J R 2014 Phys. Rev. Lett. 113 036801

    [17]

    Samavatia A, Othamana Z, Ghoshalb S K, Mustafac M K 2015 Chin. Phys. B 24 028103

    [18]

    Sarengaowa 2009 M. S. Thesis (Tongliao: Inner Mongolia University for Nationalities) (in Chinese) [萨仁高娃 2009 硕士学位论文(通辽: 内蒙古民族大学)]

  • [1]

    Wang H Y, Dou X M, Ni H Q, Niu Z C, Sun B Q 2014 Acta Phys. Sin. 63 027801(in Chinese) [王海艳, 窦秀明, 倪海桥, 牛智川, 孙宝权 2014 物理学报 63 027801]

    [2]

    Wang H P, Wang G L, Ni H Q, Xu Y Q, Niu Z C, Gao F Q 2013 Acta Phys. Sin. 62 207303(in Chinese) [王红培, 王广龙, 倪海桥, 徐应强, 牛智川, 高凤岐 2013 物理学报 62 207303]

    [3]

    Zhou Q C, Di Z Y 2013 Acta Phys. Sin. 62 134206(in Chinese) [周青春, 狄尊燕 2013 物理学报 62 134206]

    [4]

    Li S S, Xia J B 2001 J. Appl. Phys. 89 3434

    [5]

    Chen C Y, Lin D L, Jin P W, Zhang S Q, Chen R 1994 Phys. Rev. B 49 13680

    [6]

    Thilagam A, Lohe M A 2005 Physica E 25 625

    [7]

    Li Y L, Xiao J L 2005 Chin. J. Lumin. 26 436 (in Chinese) [李亚利, 肖景林 2005 发光学报 26 436]

    [8]

    Jian R H, Zhao C L 2008 Chin. J. Lumin. 29 215 [简荣华, 赵翠兰 2008 发光学报 29 215]

    [9]

    Filikhin I, Deyneka E, Vlahovic B 2004 Modelling Simul. Mater. Sci. Eng. 12 1121

    [10]

    Filikhin I, Suslov V M, Vlahovic B 2006 Physica E 33 349

    [11]

    Chang K, Xia J B 1998 Phys. Rev. B 57 9780

    [12]

    Chang K, Lou W K 2011 Phys. Rev. Lett. 106 206802

    [13]

    Fang D F, Ding X, Dai R C, Zhao Z, Wang Z P, Zhang Z M 2014 Chin. Phys. B 23 127804

    [14]

    Bagheri Tagani M, Rahimpour Soleimani H 2014 Chin. Phys. B 23 057302

    [15]

    Kruchinin S Y, Rukhlenko I D, Baimuratov A S, Leonov M Y, Turkov V K, Gun’ko Y K, Baranov A V, Fedorov A V 2015 J. Appl. Phys. 117 014306

    [16]

    Liu Y Y, Petersson K D, Stehlik J, Taylor J M, Petta J R 2014 Phys. Rev. Lett. 113 036801

    [17]

    Samavatia A, Othamana Z, Ghoshalb S K, Mustafac M K 2015 Chin. Phys. B 24 028103

    [18]

    Sarengaowa 2009 M. S. Thesis (Tongliao: Inner Mongolia University for Nationalities) (in Chinese) [萨仁高娃 2009 硕士学位论文(通辽: 内蒙古民族大学)]

  • [1] 邢凤竹, 崔建坡, 王艳召, 顾建中. 激发态丰质子核的双质子发射. 物理学报, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [2] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应. 物理学报, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [3] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [4] 刘俊娟, 魏增江, 常虹, 张亚琳, 邸冰. 杂质离子对有机共轭聚合物中极化子动力学性质的影响. 物理学报, 2016, 65(6): 067202. doi: 10.7498/aps.65.067202
    [5] 白旭芳, 乌云其木格, 辛伟, 额尔敦朝鲁. Rashba自旋-轨道相互作用影响下量子盘中强耦合磁极化子性质的研究. 物理学报, 2014, 63(17): 177803. doi: 10.7498/aps.63.177803
    [6] 武振华, 李华, 严亮星, 刘炳灿, 田强. 分数维方法研究GaAs薄膜中的极化子. 物理学报, 2013, 62(9): 097302. doi: 10.7498/aps.62.097302
    [7] 刘炳灿, 李华, 严亮星, 孙慧, 田强. GaAs薄膜的有效量子限制长度及其极化子特性. 物理学报, 2013, 62(19): 197302. doi: 10.7498/aps.62.197302
    [8] 王启文, 红兰. 二维量子点中极化子的自旋弛豫. 物理学报, 2012, 61(1): 017107. doi: 10.7498/aps.61.017107
    [9] 任学藻, 贺树, 丛红璐, 王旭文. 两格点两电子Hubbard-Holstein模型极化子的量子纠缠特性. 物理学报, 2012, 61(12): 124207. doi: 10.7498/aps.61.124207
    [10] 赵翠兰, 丛银川. 球壳量子点中极化子和量子比特的声子效应. 物理学报, 2012, 61(18): 186301. doi: 10.7498/aps.61.186301
    [11] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [12] 赵翠兰, 高宽云. 声子和磁场对量子环中极化子性质的影响. 物理学报, 2010, 59(7): 4857-4862. doi: 10.7498/aps.59.4857
    [13] 孙震, 安忠, 李元, 刘文, 刘德胜, 解士杰. 高聚物中极化子和三重态激子的碰撞过程研究. 物理学报, 2009, 58(6): 4150-4155. doi: 10.7498/aps.58.4150
    [14] 任学藻, 黄书文, 廖旭, 汪克林. 有限格点一维Holstein极化子研究. 物理学报, 2009, 58(4): 2680-2683. doi: 10.7498/aps.58.2680
    [15] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [16] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级. 物理学报, 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [17] 汤乃云, 陈效双, 陆 卫. 尺寸分布对量子点激发态发光性质的影响. 物理学报, 2005, 54(12): 5855-5860. doi: 10.7498/aps.54.5855
    [18] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论. 物理学报, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] 辛国锋, 陈国鹰, 花吉珍, 赵润, 康志龙, 冯荣珠, 安振峰. 941nm大功率应变单量子阱激光器的波长设计. 物理学报, 2004, 53(5): 1293-1298. doi: 10.7498/aps.53.1293
    [20] 刘翠红, 陈传誉, 马本堃. 极化子效应对量子盘中线性和非线性光吸收系数的影响. 物理学报, 2002, 51(9): 2022-2028. doi: 10.7498/aps.51.2022
计量
  • 文章访问数:  3312
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-31
  • 修回日期:  2015-05-24
  • 刊出日期:  2015-09-05

有限深抛物势量子盘中极化子的激发态性质

  • 1. 内蒙古民族大学物理与电子信息学院, 通辽 028043;
  • 2. 赤峰学院计算机与信息工程学院, 赤峰 024000
  • 通信作者: 赵翠兰, nmdzcl@163.com
    基金项目: 国家自然科学基金(批准号: 11464034)和内蒙古高校科研基金(批准号: NJzy13174)资助的课题.

摘要: 量子点作为一种重要的低维纳米结构, 近年来在单光子光源和新型量子点单光子探测器的研究引起了人们的广泛关注, 对各种势阱中量子点性质的研究已取得了重要成果. 但是大多理论研究都局限于无限深势阱, 而有限深势阱更具有实际意义. 利用平面波展开、幺正变换和变分相结合的方法研究了有限深势阱中极化子激发态能量及激发能随势阱形状和量子盘大小的变化规律. 数值计算结果表明: 极化子的激发态能量、激发能随势垒高度或宽度的增大而增大, 原因是势垒愈高、愈宽, 电子穿透势垒的可能性愈小, 电子在阱内运动的可能性愈大, 进而导致极化子的激发态能量和激发能均随势垒高度和宽度的增大而增大; 极化子的激发态能量和激发能随量子盘半径的增大而减小, 表明量子盘具有显著的量子尺寸效应; 极化子的激发态能量随有效受限长度的增加而减小, 原因是有效受限长度愈大, 有效受限强度愈小, 电子受到的束缚愈弱、振动愈慢、势能愈小, 进而导致基态能量、激发态能量减小; 同时由于激发态能量较基态能量减小慢, 使得激发能随之增加. 研究结果对量子点的应用具有一定的理论指导意义.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回