搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激发态丰质子核的双质子发射

邢凤竹 崔建坡 王艳召 顾建中

引用本文:
Citation:

激发态丰质子核的双质子发射

邢凤竹, 崔建坡, 王艳召, 顾建中

Two-proton emission from excited states of proton-rich nuclei

Xing Feng-Zhu, Cui Jian-Po, Wang Yan-Zhao, Gu Jian-Zhong
PDF
HTML
导出引用
  • 将有效液滴模型和推广的液滴模型推广至激发态丰质子核的双质子发射半衰期研究, 发现这两个模型都能较好地再现双质子发射半衰期的实验数据. 基于这两个模型预言了一些核的激发态的双质子发射的半衰期, 为将来的实验提供参考, 并将上述半衰期与统一裂变模型给出的半衰期进行了比较和分析. 此外, 以94Ag的21+激发态的双质子发射为例, 讨论了衰变能和衰变过程中带走的轨道角动量对其半衰期的影响, 发现半衰期对它们的依赖很敏感, 半衰期对衰变能的强烈依赖表明了精确测量核质量和激发能的重要性和必要性.
    The effective liquid drop model (ELDM) and the generalized liquid drop model (GLDM) are extended to the case of studying the two-proton (2p) radioactivity from the excited states of proton-rich nuclei. It is shown that the experimental 2p decay half-lives are reproduced well by the ELDM and the GLDM. Then, the 2p decay half-lives of excited states of some nuclei that are not yet available experimentally are predicted by the two models, which are useful for searching for the new 2p decay candidates in future. Meanwhile, the above predicted half-lives are analyzed and compared with those given by the unified fission model (UFM). Next, the influence of the uncertainties of the decay energy and the angular momentum on the half-lives are analyzed in the frame of the two models by taking the 2p radioactivity of the 21+ isomeric state of 94Ag for example. It is found that the half-lives go up with the increase of the angular momentum, following the law of the quadratic function. Furthermore, the strong dependence of the half-lives on the decay energy suggests that it is important and necessary to measure accurately the mass value of the parent nucleus and the daughter nucleus and the excitation energy. Finally, it is necessary to point out that the existence of the 2p radioactivity in the 21+ isomeric state of 94Ag remains to be a mystery. Moreover, although the 2p radioactivity is observed from the higher excited states of 17Ne and 18Ne, the relevant hypotheses have not yet been further tested experimentally. The construction of a new generation of radioactive ion beam facilities, such as the high intensity heavy-ion accelerator facility (HIAF), is expected to be used to uncover the nature of the 2p radioactivity in the 21+ isomeric state of 94Ag and further test the hypotheses of the 2p decay from the higher excited states of 17Ne and 18Ne. On the other hand, some microscopic models, such as the shell model, need to be further developed by including some necessary physical factors, such as the tensor force, three-body force and accurate pairing force, to describe the mechanism of the 2p emission of the excited states more reasonably. In summary, more nuclear structure information can be extracted by studying the 2p radioactivity of the excited states. It is worth studying further although it is rather difficult to observe.
      通信作者: 王艳召, yanzhaowang09@126.com ; 顾建中, jzgu1963@ciae.ac.cn
    • 基金项目: 国家自然科学基金(批准号: U1832120, 11675265)、河北省自然科学基金(批准号: A2020210012, A2021210010)、稳定基础支持项目(批准号: WDJC-2019-13)和领创科研项目(批准号: LC192209000701)资助的课题
      Corresponding author: Wang Yan-Zhao, yanzhaowang09@126.com ; Gu Jian-Zhong, jzgu1963@ciae.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1832120, 11675265), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2020210012, A2021210010), the Continuous Basic Scientific Research Project, China (Grant No. WDJC-2019-13), and the Leading Innovation Project, China (Grant No. LC192209000701).
    [1]

    Goldansky V I 1960 Nucl. Phys. 19 482Google Scholar

    [2]

    Goldansky V I 1961 Nucl. Phys. 27 648Google Scholar

    [3]

    Cable M D, Honkanen J, Parry R F, et al. 1983 Phys. Rev. Lett. 50 404Google Scholar

    [4]

    Blank B, Boue F, Andriamonje S, et al. 1997 Z. Phys. A: At. Nucl. 357 247

    [5]

    Honkanen J, Cable M D, Parry R F, et al. 1983 Phys. Lett. B 133 146Google Scholar

    [6]

    Borrel V, Jacmart J C, Pougheon F, et al. 1987 Nucl. Phys. A 473 331Google Scholar

    [7]

    Dossat C, Adimi N, Aksouh F, et al. 2007 Nucl. Phys. A 792 18Google Scholar

    [8]

    Bain C R, Woods P J, Coszach R, et al. 1996 Phys. Lett. B 373 35Google Scholar

    [9]

    Chromik M, Brown B A, Fauerbach M, et al. 1997 Phys. Rev. C 55 1676Google Scholar

    [10]

    Chromik M J, Thirolf P G, Thoennessen M, et al. 2002 Phys. Rev. C 66 024313Google Scholar

    [11]

    Gomez del Campo J, Galindo-Uribarri A, Beene J R, et al. 2001 Phys. Rev. Lett. 86 43Google Scholar

    [12]

    Raciti G, Cardella G, De Napoli M, et al. 2008 Phys. Rev. Lett. 100 192503Google Scholar

    [13]

    Goldansky V I 1988 Phys. Lett. B 212 11Google Scholar

    [14]

    Pfützner M, Badura E, Bingham C, et al. 2002 Eur. Phys. J. A 14 279Google Scholar

    [15]

    Giovinazzo J, Blank B, Chartier M, et al. 2002 Phys. Rev. Lett. 89 102501Google Scholar

    [16]

    Dossat C, Bey A, Blank B, et al. 2005 Phys. Rev. C 72 054315Google Scholar

    [17]

    Pomorski M, Pfützner M, Dominik W, et al. 2014 Phys. Rev. C 90 014311Google Scholar

    [18]

    Wang M, Audi G, Kondev F G, et al. 2017 Chin. Phys. C 41 030003Google Scholar

    [19]

    Pomorski M, Pfützner M, Dominik W, et al. 2011 Phys. Rev. C 83 061303(R

    [20]

    Blank B, Bey A, Canchel G, et al. 2005 Phys. Rev. Lett. 94 232501Google Scholar

    [21]

    Ascher P, Audirac L, Adimi N, et al. 2011 Phys. Rev. Lett. 107 102502Google Scholar

    [22]

    Goigoux T, Ascher P, Blank B, et al. 2016 Phys. Rev. Lett. 117 162501Google Scholar

    [23]

    Whaling W 1966 Phys. Rev. C 150 836Google Scholar

    [24]

    Jager M F, Charity R J, Elson J M, et al. 2012 Phys. Rev. C 86 011304Google Scholar

    [25]

    KeKelis G J, Zisman M S, Scott D K, et al. 1978 Phys. Rev. C 17 1929Google Scholar

    [26]

    Kryger R A, Azhair A, Hellstrom M, et al. 1995 Phys. Rev. Lett. 74 860Google Scholar

    [27]

    Suzuki D, Iwasaki H, Beaumel D, et al. 2009 Phys. Rev. Lett. 103 152503Google Scholar

    [28]

    Woodward C J, Tribble R E, Tanner D M, et al. 1983 Phys. Rev. C 27 27

    [29]

    Mukha I, Summerer K, Acosta L, et al. 2007 Phys. Rev. Lett. 99 182501Google Scholar

    [30]

    Pfützner M, Karny M, Grigorenko L, et al. 2012 Rev. Mod. Phys. 84 567Google Scholar

    [31]

    Blank B, Ploszajczak M 2008 Rep. Prog. Phys. 71 046301Google Scholar

    [32]

    Blank B, Borge M J G 2008 Prog. Part. Nucl. Phys. 60 403Google Scholar

    [33]

    方德清, 马余刚 2020 科学通报 65 4018Google Scholar

    Fang D Q, Ma Y G 2020 Chin. Sci. Bull. 65 4018Google Scholar

    [34]

    Fisker J L, Thielemann F K, Wiescher M 2004 Astrophys. J. 608 L61Google Scholar

    [35]

    Janecke J 1965 Nucl. Phys. 61 326Google Scholar

    [36]

    Brown B A 1991 Phys. Rev. C 43 R1513Google Scholar

    [37]

    Galitsky V M, Cheltsov V F 1964 Nucl. Phys. 56 86Google Scholar

    [38]

    Nazarewicz W, Dobaczewski J, Werner T R, et al. 1996 Phys. Rev. C 53 740Google Scholar

    [39]

    Grigorenko L V, Zhukov M V 2007 Phys. Rev. C 76 014008Google Scholar

    [40]

    Delion D S, Liotta R J, Wyss R 2013 Phys. Rev. C 87 034328Google Scholar

    [41]

    Liu H M, Pan X, Zou Y T, et al. 2021 Chin. Phys. C 45 044110Google Scholar

    [42]

    Sreeja I, Balasubramaniam M 2019 Eur. Phys. J. A 55 33Google Scholar

    [43]

    Olsen E, Pfutzner M, Birge N, et al. 2013 Phys. Rev. Lett. 110 222501Google Scholar

    [44]

    Kadmensky S G 2005 Phys. At. Nucl. 68 184

    [45]

    Alvarez-Rodrýguez R, Jensen A S, Garrido E, Fedorov D V 2010 Phys. Rev. C 82 034001Google Scholar

    [46]

    Gonalves M, Teruya N, Tavares O, et al. 2017 Phys. Lett. B 774 14Google Scholar

    [47]

    Cui J P, Gao Y H, Wang Y Z, Gu J Z 2020 Phys. Rev. C 101 014301

    [48]

    Wang Y Z, Cui J P, Gao Y H, Gu J Z 2021 Commun. Theor. Phys. 73 075301Google Scholar

    [49]

    Wang Y Z, Wang S J, Hou Z Y, Gu J Z 2015 Phys. Rev. C 92 064301

    [50]

    Wang Y Z, Xing F Z, Xiao Y, Gu J Z 2021 Chin. Phys. C 45 044111Google Scholar

    [51]

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2021 Chin. Phys. C 45 124105Google Scholar

    [52]

    Ma Y G, Fang D Q, Sun X Y, et al. 2015 Phys. Lett. B 743 306Google Scholar

    [53]

    Fang D Q, Ma Y G, Sun X Y, et al. 2016 Phys. Rev. C 94 044621Google Scholar

    [54]

    Lin C J, Xu X X, Jia H M, et al. 2009 Phys. Rev. C 80 014310Google Scholar

    [55]

    Mukha I, Roeckl E, Batist L, et al. 2006 Nature 439 298Google Scholar

    [56]

    Kankainen A, Elomaa V V, Batist L, et al. 2008 Phys. Rev. Lett. 101 142503Google Scholar

    [57]

    Duarte S B, Tavares O A P, Guzman F, et al. 2002 At. Data Nucl. Data Tables 80 235Google Scholar

    [58]

    Wang Y Z, Cui J P, Zhang Y L, Zhang S, Gu J Z 2017 Phys. Rev. C 95 014302

    [59]

    王艳召, 崔建坡, 刘军, 苏学斗 2017 原子能科学技术 51 1544Google Scholar

    Wang Y Z, Cui J P, Liu J, Su X D 2017 Atom. Energ. Sci. Technol. 51 1544Google Scholar

    [60]

    圣宗强, 舒良萍, 孟影, 胡继刚, 钱建发 2014 物理学报 63 162302Google Scholar

    Sheng Z Q, Shu L P, Meng Y, Hu J G, Qian J F 2014 Acta Phys. Sin. 63 162302Google Scholar

    [61]

    张小平, 任中洲 2006 高能物理与核物理 30 47

    Zhang X P, Ren Z Z 2006 High Energ. Phys. Nucl. Phys. 30 47

    [62]

    Cui J P, Gao Y H, Wang Y Z, Gu J Z 2022 Nucl. Phys. A 1017 122341Google Scholar

    [63]

    Royer G 2000 J. Phys. G Nucl. Part. Phys. 26 1149Google Scholar

    [64]

    Mukha I, Roeckl E, Doring J, et al. 2005 Phys. Rev. Lett. 95 022501Google Scholar

    [65]

    Pechenaya O L, Chiara C J, Sarantites D G, et al. 2007 Phys. Rev. C 76 011304(R

    [66]

    Cerny J, Moltz D M, Lee D W, et al. 2009 Phys. Rev. Lett. 103 152502Google Scholar

    [67]

    Mukha I, Grawe H, Roeckl E, Tabor S 2008 Phys. Rev. C 78 039803Google Scholar

    [68]

    Pechenaya O L, Sarantites D G, Reviol W, Chiara C J, Janssens R V F, Lister C J, Seweryniak D 2008 Phys. Rev. C 78 039804Google Scholar

    [69]

    Zerguerras T, Blank B, Blumenfeld Y, et al. 2004 Eur. Phys. J. A 20 389Google Scholar

    [70]

    马余刚, 赵红卫 2020 中国科学: 物理学 力学 天文学 50 112001Google Scholar

    Ma Y G, Zhao H W 2020 Sci. Sin. -Phys. Mech. Astron. 50 112001Google Scholar

    [71]

    Otsuka T, Suzuki T, Fujimoto R, et al. 2005 Phys. Rev. Lett. 95 232502Google Scholar

    [72]

    Holt J D, Menendez J, Schwenk A 2013 Phys. Rev. Lett. 110 022502Google Scholar

    [73]

    Qi C, Chen T 2015 Phys. Rev. C 92 051304Google Scholar

  • 图 1  母核衰变过程中发射粒子和子核形状示意图

    Fig. 1.  Schematic representation of the configuration of the emitted particle and daughter nucleus.

    图 2  用ELDM 和GLDM计算的94Ag的21+激发态的2p发射半衰期随l的演化情况, 阴影区域为半衰期的实验数据

    Fig. 2.  The 2p decay half-lives of the 21+ isomeric state of 94Ag within the ELDM and GLDM as functions of l. The shaded area stands for the experimental half-life.

    表 1  激发态原子核2p发射半衰期的理论计算结果与实验值的比较

    Table 1.  Comparison between the experimental 2p decay half-lives of excited states and those within different models.

    母核子核$J_{\text{i}}^{\text{π }}$$J_{\text{f}}^{\text{π }}$lQExp./MeV${\lg}{T_{1/2} }/{\text{s} }$
    Exp.ELDMGLDMUFM[51]
    14O*12C2+0+21.20[8]>–16.12[8]–15.49–16.10–16.02
    2+0+23.15[8]–18.22–19.58–18.87
    4+0+43.35[8]–16.25–16.76–15.96
    17Ne*15O3/21/220.35[9,10]>–10.59[10]–6.98–6.79–7.11
    5/21/220.82[9,10]–12.41–12.68–12.73
    1/2+1/210.97[9,10]–14.20–14.68–14.69
    18Ne*16O2+0+20.59[11]–10.59–10.96–10.91
    10+11.63[11]$ -16.15^{+0.06}_{-0.06} $[11,12]–16.34–17.20–16.79
    22Mg*20Ne0+06.11[52,53]–19.75–19.58–18.97
    29S*27Si0+01.72—2.52[54]–15.5— –13.4–17.2— –14.7–16.4— –14.3
    0+04.32—5.12[54]–18.4— –17.8–19.2— –18.8–18.9— –18.5
    94Ag*92Rh*21+11+6—101.90[55]$ 1.90^{+0.38}_{-0.20} $[55]9.42—14.638.22—13.389.38—15.21
    1.98[56]8.61—13.807.41—12.558.56—14.37
    2.05[56]7.95—13.116.74—11.867.89—13.68
    3.45[56]–0.80—4.04–2.03—2.75–0.92—4.56
    下载: 导出CSV
  • [1]

    Goldansky V I 1960 Nucl. Phys. 19 482Google Scholar

    [2]

    Goldansky V I 1961 Nucl. Phys. 27 648Google Scholar

    [3]

    Cable M D, Honkanen J, Parry R F, et al. 1983 Phys. Rev. Lett. 50 404Google Scholar

    [4]

    Blank B, Boue F, Andriamonje S, et al. 1997 Z. Phys. A: At. Nucl. 357 247

    [5]

    Honkanen J, Cable M D, Parry R F, et al. 1983 Phys. Lett. B 133 146Google Scholar

    [6]

    Borrel V, Jacmart J C, Pougheon F, et al. 1987 Nucl. Phys. A 473 331Google Scholar

    [7]

    Dossat C, Adimi N, Aksouh F, et al. 2007 Nucl. Phys. A 792 18Google Scholar

    [8]

    Bain C R, Woods P J, Coszach R, et al. 1996 Phys. Lett. B 373 35Google Scholar

    [9]

    Chromik M, Brown B A, Fauerbach M, et al. 1997 Phys. Rev. C 55 1676Google Scholar

    [10]

    Chromik M J, Thirolf P G, Thoennessen M, et al. 2002 Phys. Rev. C 66 024313Google Scholar

    [11]

    Gomez del Campo J, Galindo-Uribarri A, Beene J R, et al. 2001 Phys. Rev. Lett. 86 43Google Scholar

    [12]

    Raciti G, Cardella G, De Napoli M, et al. 2008 Phys. Rev. Lett. 100 192503Google Scholar

    [13]

    Goldansky V I 1988 Phys. Lett. B 212 11Google Scholar

    [14]

    Pfützner M, Badura E, Bingham C, et al. 2002 Eur. Phys. J. A 14 279Google Scholar

    [15]

    Giovinazzo J, Blank B, Chartier M, et al. 2002 Phys. Rev. Lett. 89 102501Google Scholar

    [16]

    Dossat C, Bey A, Blank B, et al. 2005 Phys. Rev. C 72 054315Google Scholar

    [17]

    Pomorski M, Pfützner M, Dominik W, et al. 2014 Phys. Rev. C 90 014311Google Scholar

    [18]

    Wang M, Audi G, Kondev F G, et al. 2017 Chin. Phys. C 41 030003Google Scholar

    [19]

    Pomorski M, Pfützner M, Dominik W, et al. 2011 Phys. Rev. C 83 061303(R

    [20]

    Blank B, Bey A, Canchel G, et al. 2005 Phys. Rev. Lett. 94 232501Google Scholar

    [21]

    Ascher P, Audirac L, Adimi N, et al. 2011 Phys. Rev. Lett. 107 102502Google Scholar

    [22]

    Goigoux T, Ascher P, Blank B, et al. 2016 Phys. Rev. Lett. 117 162501Google Scholar

    [23]

    Whaling W 1966 Phys. Rev. C 150 836Google Scholar

    [24]

    Jager M F, Charity R J, Elson J M, et al. 2012 Phys. Rev. C 86 011304Google Scholar

    [25]

    KeKelis G J, Zisman M S, Scott D K, et al. 1978 Phys. Rev. C 17 1929Google Scholar

    [26]

    Kryger R A, Azhair A, Hellstrom M, et al. 1995 Phys. Rev. Lett. 74 860Google Scholar

    [27]

    Suzuki D, Iwasaki H, Beaumel D, et al. 2009 Phys. Rev. Lett. 103 152503Google Scholar

    [28]

    Woodward C J, Tribble R E, Tanner D M, et al. 1983 Phys. Rev. C 27 27

    [29]

    Mukha I, Summerer K, Acosta L, et al. 2007 Phys. Rev. Lett. 99 182501Google Scholar

    [30]

    Pfützner M, Karny M, Grigorenko L, et al. 2012 Rev. Mod. Phys. 84 567Google Scholar

    [31]

    Blank B, Ploszajczak M 2008 Rep. Prog. Phys. 71 046301Google Scholar

    [32]

    Blank B, Borge M J G 2008 Prog. Part. Nucl. Phys. 60 403Google Scholar

    [33]

    方德清, 马余刚 2020 科学通报 65 4018Google Scholar

    Fang D Q, Ma Y G 2020 Chin. Sci. Bull. 65 4018Google Scholar

    [34]

    Fisker J L, Thielemann F K, Wiescher M 2004 Astrophys. J. 608 L61Google Scholar

    [35]

    Janecke J 1965 Nucl. Phys. 61 326Google Scholar

    [36]

    Brown B A 1991 Phys. Rev. C 43 R1513Google Scholar

    [37]

    Galitsky V M, Cheltsov V F 1964 Nucl. Phys. 56 86Google Scholar

    [38]

    Nazarewicz W, Dobaczewski J, Werner T R, et al. 1996 Phys. Rev. C 53 740Google Scholar

    [39]

    Grigorenko L V, Zhukov M V 2007 Phys. Rev. C 76 014008Google Scholar

    [40]

    Delion D S, Liotta R J, Wyss R 2013 Phys. Rev. C 87 034328Google Scholar

    [41]

    Liu H M, Pan X, Zou Y T, et al. 2021 Chin. Phys. C 45 044110Google Scholar

    [42]

    Sreeja I, Balasubramaniam M 2019 Eur. Phys. J. A 55 33Google Scholar

    [43]

    Olsen E, Pfutzner M, Birge N, et al. 2013 Phys. Rev. Lett. 110 222501Google Scholar

    [44]

    Kadmensky S G 2005 Phys. At. Nucl. 68 184

    [45]

    Alvarez-Rodrýguez R, Jensen A S, Garrido E, Fedorov D V 2010 Phys. Rev. C 82 034001Google Scholar

    [46]

    Gonalves M, Teruya N, Tavares O, et al. 2017 Phys. Lett. B 774 14Google Scholar

    [47]

    Cui J P, Gao Y H, Wang Y Z, Gu J Z 2020 Phys. Rev. C 101 014301

    [48]

    Wang Y Z, Cui J P, Gao Y H, Gu J Z 2021 Commun. Theor. Phys. 73 075301Google Scholar

    [49]

    Wang Y Z, Wang S J, Hou Z Y, Gu J Z 2015 Phys. Rev. C 92 064301

    [50]

    Wang Y Z, Xing F Z, Xiao Y, Gu J Z 2021 Chin. Phys. C 45 044111Google Scholar

    [51]

    Xing F Z, Cui J P, Wang Y Z, Gu J Z 2021 Chin. Phys. C 45 124105Google Scholar

    [52]

    Ma Y G, Fang D Q, Sun X Y, et al. 2015 Phys. Lett. B 743 306Google Scholar

    [53]

    Fang D Q, Ma Y G, Sun X Y, et al. 2016 Phys. Rev. C 94 044621Google Scholar

    [54]

    Lin C J, Xu X X, Jia H M, et al. 2009 Phys. Rev. C 80 014310Google Scholar

    [55]

    Mukha I, Roeckl E, Batist L, et al. 2006 Nature 439 298Google Scholar

    [56]

    Kankainen A, Elomaa V V, Batist L, et al. 2008 Phys. Rev. Lett. 101 142503Google Scholar

    [57]

    Duarte S B, Tavares O A P, Guzman F, et al. 2002 At. Data Nucl. Data Tables 80 235Google Scholar

    [58]

    Wang Y Z, Cui J P, Zhang Y L, Zhang S, Gu J Z 2017 Phys. Rev. C 95 014302

    [59]

    王艳召, 崔建坡, 刘军, 苏学斗 2017 原子能科学技术 51 1544Google Scholar

    Wang Y Z, Cui J P, Liu J, Su X D 2017 Atom. Energ. Sci. Technol. 51 1544Google Scholar

    [60]

    圣宗强, 舒良萍, 孟影, 胡继刚, 钱建发 2014 物理学报 63 162302Google Scholar

    Sheng Z Q, Shu L P, Meng Y, Hu J G, Qian J F 2014 Acta Phys. Sin. 63 162302Google Scholar

    [61]

    张小平, 任中洲 2006 高能物理与核物理 30 47

    Zhang X P, Ren Z Z 2006 High Energ. Phys. Nucl. Phys. 30 47

    [62]

    Cui J P, Gao Y H, Wang Y Z, Gu J Z 2022 Nucl. Phys. A 1017 122341Google Scholar

    [63]

    Royer G 2000 J. Phys. G Nucl. Part. Phys. 26 1149Google Scholar

    [64]

    Mukha I, Roeckl E, Doring J, et al. 2005 Phys. Rev. Lett. 95 022501Google Scholar

    [65]

    Pechenaya O L, Chiara C J, Sarantites D G, et al. 2007 Phys. Rev. C 76 011304(R

    [66]

    Cerny J, Moltz D M, Lee D W, et al. 2009 Phys. Rev. Lett. 103 152502Google Scholar

    [67]

    Mukha I, Grawe H, Roeckl E, Tabor S 2008 Phys. Rev. C 78 039803Google Scholar

    [68]

    Pechenaya O L, Sarantites D G, Reviol W, Chiara C J, Janssens R V F, Lister C J, Seweryniak D 2008 Phys. Rev. C 78 039804Google Scholar

    [69]

    Zerguerras T, Blank B, Blumenfeld Y, et al. 2004 Eur. Phys. J. A 20 389Google Scholar

    [70]

    马余刚, 赵红卫 2020 中国科学: 物理学 力学 天文学 50 112001Google Scholar

    Ma Y G, Zhao H W 2020 Sci. Sin. -Phys. Mech. Astron. 50 112001Google Scholar

    [71]

    Otsuka T, Suzuki T, Fujimoto R, et al. 2005 Phys. Rev. Lett. 95 232502Google Scholar

    [72]

    Holt J D, Menendez J, Schwenk A 2013 Phys. Rev. Lett. 110 022502Google Scholar

    [73]

    Qi C, Chen T 2015 Phys. Rev. C 92 051304Google Scholar

  • [1] 贾韫哲, 孟胜. 光激发下水体系的超快动力学. 物理学报, 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [2] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究. 物理学报, 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [3] 庞晓娟, 赵凯玥, 何航宇, 张宁波, 蒋臣威. 靛红双氮二苯腙分子开关的光致异构化机理. 物理学报, 2024, 73(17): 173101. doi: 10.7498/aps.73.20240461
    [4] 李多多, 张嵩. 五氟吡啶激发态非绝热弛豫过程中的分子结构. 物理学报, 2024, 73(4): 043101. doi: 10.7498/aps.73.20231570
    [5] 李亚莎, 孙林翔, 周筱, 陈凯, 汪辉耀. 基于密度泛函理论的外电场下C5F10O的结构及其激发特性. 物理学报, 2020, 69(1): 013101. doi: 10.7498/aps.69.20191455
    [6] 张树东, 王传航, 唐伟, 孙阳, 孙宁泽, 孙召玉, 徐慧. TiAl电子态结构的ab initio计算. 物理学报, 2019, 68(24): 243101. doi: 10.7498/aps.68.20191341
    [7] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [8] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究. 物理学报, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [9] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [10] 李桂霞, 姜永超, 凌翠翠, 马红章, 李鹏. HF+离子在旋轨耦合作用下电子态的特性. 物理学报, 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [11] 曹欣伟, 任杨, 刘慧, 李姝丽. 强外电场作用下BN分子的结构与激发特性. 物理学报, 2014, 63(4): 043101. doi: 10.7498/aps.63.043101
    [12] 圣宗强, 舒良萍, 孟影, 胡继刚, 钱建发. 有效液滴模型对超铅区结团放射性的研究. 物理学报, 2014, 63(16): 162302. doi: 10.7498/aps.63.162302
    [13] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究. 物理学报, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [14] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质. 物理学报, 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [15] 支启军, 郑强. 壳模型对13N Gamow-Teller跃迁的研究. 物理学报, 2011, 60(10): 102301. doi: 10.7498/aps.60.102301
    [16] 周业宏, 蔡绍洪. 氯乙烯在外电场下的激发态结构研究. 物理学报, 2010, 59(11): 7749-7755. doi: 10.7498/aps.59.7749
    [17] 张高龙, 乐小云, 刘浩. 重核大集团发射半衰期的计算. 物理学报, 2009, 58(4): 2300-2305. doi: 10.7498/aps.58.2300
    [18] 吕 兵, 周 勋, 令狐荣锋, 杨向东, 朱正和. MgH分子X2Σ+,A2Π和B2Σ+电子态的势能函数. 物理学报, 2008, 57(2): 816-821. doi: 10.7498/aps.57.816
    [19] 魏 群, 杨子元, 王参军, 许启明. 轴对称晶场中d3离子激发态对4A2基态自旋哈密顿参量的影响. 物理学报, 2007, 56(1): 507-511. doi: 10.7498/aps.56.507
    [20] 汤乃云, 陈效双, 陆 卫. 尺寸分布对量子点激发态发光性质的影响. 物理学报, 2005, 54(12): 5855-5860. doi: 10.7498/aps.54.5855
计量
  • 文章访问数:  5520
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-03
  • 修回日期:  2021-11-09
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回