搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜入射非线性电离层Langmuir扰动的电磁波传播特性

杨利霞 刘超 李清亮 闫玉波

引用本文:
Citation:

斜入射非线性电离层Langmuir扰动的电磁波传播特性

杨利霞, 刘超, 李清亮, 闫玉波

Electromagnetic wave propagation characteristics of oblique incidence nonlinear ionospheric Langmuir disturbance

Yang Li-Xia, Liu Chao, Li Qing-Liang, Yan Yu-Bo
PDF
HTML
导出引用
  • 基于广义Zakharov模型, 结合斜入射等离子体的时域有限差分(FDTD)方法与双流体力学方程, 通过由二维麦克斯韦方程等价转换的一维麦克斯韦方程, 与等离子体流体力学方程建立了一个电磁波以不同角度入射电离层传播的数值模型. 分析推导出$\mathrm{T}{\mathrm{E}}_{{z}}$波在斜入射非线性电离层等离子体的支配方程, 然后推导了适用于计算电离层电磁波传播特性的FDTD算法. 通过仿真来证明该方法在较小倾角下, 电磁波对电离层加热形成Langmuir扰动及其传播特性的准确性和有效性. 结果表明, 在小角度入射下, 大功率高频电磁波在电离层等离子体中的O波反射点附近激发出了Langmuir波, 同时波粒相互作用导致O波转换为Z波并向电离层更高区域传播. 本文进一步研究了基于电离层等离子体的电磁波传播特性, 为全面深入分析电离层Langmuir扰动对电离层电波传播特性影响奠定数值算法的基础.
    Based on the generalized Zakharov model, a numerical model of electromagnetic wave propagating in the ionosphere at different angles is established by combining the finite difference time domain (FDTD) method of obliquely incident plasma with the double hydrodynamics equation and through equivalently transforming the two-dimensional Maxwell equation into one-dimensional Maxwell equation and the plasma hydrodynamics equation. In this paper. the dominant equation of Z-wave in obliquely incident nonlinear ionospheric plasma having been analyzed and deduced, the FDTD algorithm suitable for calculating the propagation characteristics of ionospheric electromagnetic wave is deduced. The simulation results prove the accuracy and effectiveness of this method for the Langmuir disturbance caused by electromagnetic wave heating the ionosphere at a small inclination angle. The results show that under small angle incidence, the high-power high-frequency electromagnetic wave excites the Langmuir wave near the O-wave reflection point in the ionospheric plasma. At the same time, the wave particle interaction causes the O-wave to convert into Z-wave and propagate into the higher region of the ionosphere. In this work, the electromagnetic wave propagation characteristics are further studied based on ionospheric plasma, which is helpful in laying the foundation of numerical algorithm for comprehensively and in depth analyzing the influence of ionospheric Langmuir disturbance on ionospheric radio wave propagation characteristics.
      通信作者: 杨利霞, lixiayang@yeah.net
    • 基金项目: 国家自然科学基金(批准号: 62071003, 41874174, 61901004)、国家国防科工局基础研究重点项目(稳定支持项目)、安徽省自然科学基金(批准号: 2008085MF186)、安徽省重点科研平台协同创新项目(批准号: GXXT-2020-050)和安徽省高校协同创新计划(批准号: GXXT-2021-028)资助的课题
      Corresponding author: Yang Li-Xia, lixiayang@yeah.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071003, 41874174, 61901004), the Key Basic Research Project of the State Administration of Science, Technology and Industry for National Defense, China, the Natural Science Foundation of Anhui Province, China (Grant No. 2008085MF186), the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2020-050), and the Collaborative Innovation Program of Universities in Anhui Province, China (Grant No. GXXT-2021-028)
    [1]

    Perkins F W, Kaw P K 1971 J. Geophys. Res. 761 282

    [2]

    Gurevich A V, Carlson H C, Medvedev Y V, Zybin K P 2004 J. Plasma Phys. Res. 30 995Google Scholar

    [3]

    Cannon P D, Honary F, Borisov N 2016 J. Geophys. Res. Space. Phys. 121 2755Google Scholar

    [4]

    Close R A, Bauer B S, Wong A Y, Langdon A B, Kruer W L, Mjølhus E 1990 Radio Sci. 25 1341Google Scholar

    [5]

    Eliasson B, Papadopoulos K 2016 J. Geophys. Res. Space Phys. 121 2727Google Scholar

    [6]

    Newman D L, Winglee R M, Robinson P A, Glanz J, Goldman M V 1990 Phys. Fluids B 2 2600Google Scholar

    [7]

    Rietveld M T, Isham B, Grydeland T, Hoz C L, Hagfors T 2002 Adv. Space Res. 29 1363Google Scholar

    [8]

    Eliasson B, Thidé B 2008 J. Geophys. Res. 113 A02313

    [9]

    Eliasson B, Stenflo L 2013 Mod. Phys. Lett. B 27 1330005

    [10]

    Mjølhus E, Hanssen A, DuBois D F 1995 J. Geophys. Res. 100 17527Google Scholar

    [11]

    Eliasson B, Thidé B 2007 J. Geophys. Res. Lett. 34 L06106

    [12]

    Eliasson B, Shao X, Milikh G, Mishin E V, Papadopoulos K 2012 J. Geophys. Res. Space Phys. 117 A10321

    [13]

    刘默然, 周晨, 赵正予, 张援农 2016 电波科学学报 31 743Google Scholar

    Liu M R, Zhou C, Zhao Z Y, Zhang Y N 2016 Chin. J. Radio 31 743Google Scholar

    [14]

    何昉, 赵正予, 倪彬彬, 张援农 2016 电波科学学报 21 525Google Scholar

    He F, Zhao Z Y, Ni B B, Zhang Y N 2016 Chin. J. Radio 21 525Google Scholar

    [15]

    朱婷 2018 硕士学位论文 (镇江: 江苏大学)

    Zhu T 2018 M. S. Thesis (Zhenjiang: Jiangsu University) (in Chinese)

    [16]

    Eliasson B, Milikh G, Shao X, Mishin E V, Papadopoulos K 2015 J. Plasma Phys. 81 415810201Google Scholar

    [17]

    张洋 2014 硕士学位论文 (西安: 西安电子科技大学)

    Zhang Y 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [18]

    樊永永 2013 硕士学位论文 (西安: 西安电子科技大学)

    Fan Y Y 2013 M. S. Thesie (Xi’an: Xidian University) (in Chinese)

    [19]

    杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚 2010 物理学报 59 6089Google Scholar

    Yang L X, Xie Y T, Kong W, Yu P P, Wang G 2010 Acta Phys, Sin. 59 6089Google Scholar

    [20]

    Taflove A, Hagness S C, Piket-May M 2005 Computational Electrodynamics: the Finite-difference Time-domain Method (Academic Press) pp629–669

    [21]

    Mjølhus E, Helmersen E, DuBois D F 2003 Nonlinear Processes Geophys. 10 151Google Scholar

    [22]

    Robinson T R 1989 Phys. Res. 179 153

    [23]

    Mishin E, Hagfors T, Kofman W 1997 J. Geophys. Res. Space Phys. 102 27265Google Scholar

    [24]

    Gondarenko N A, Guzdar P N, Ossakow S L, Bernhardt P A 2003 J. Geophys. Res. Space Phys. 108 1470Google Scholar

    [25]

    Gondarenko N A, Ossakow S L, Milikh G M 2006 Geophys. Res. Lett. 33 399

    [26]

    葛德彪, 闫玉波 2011 电磁波时域有限差分方法 (西安: 西安电子科技大学出版社) 第42—46页

    Ge D B, Yan Y B 2011 The Finite-Difference Time-Domain Method (Xi’an: Xidian University Press) pp42–46 (in Chinese)

    [27]

    李定 2006 等离子体物理学 (北京: 高等教育出版社) 第88页

    Li D 2006 Plasma Physics (Beijing: Higher Education Press) p88 (in Chinese)

    [28]

    Benson R F, Webb P A, Green J L, Carpenter D L, Sonwalkar V S, James H G, Reinisch B W 2006 Ringberg Workshop on High Frequency Waves in Geospace, Ringberg, Germany, July 11–14, 2004 p687

    [29]

    Zhang J, Hai Y F, Wayne S 2018 IEEE Trans. Plasma Sci. 46 2146Google Scholar

    [30]

    Chen J, Yan Y B, Li Q L, Yuan G, Li H Y, Hao S J, Che H Q 2018 12 th International Symposium on Antennas, Propagation and Electromagnetic Theory (ISAPE) Hangzhou, China, December 3–6, 2018 p650

  • 图 1  TEz波斜入射电离层等离子体的传播模型

    Fig. 1.  Propagation model of TEz wave obliquely incident ionospheric plasma.

    图 2  FDTD电磁场时域的逐步迭代流程图

    Fig. 2.  Step by step iterative flow chart of FDTD electromagnetic field in time domain.

    图 3  电磁波加热电离层传播模型

    Fig. 3.  Ionospheric propagation model heated by electromagnetic wave.

    图 4  O波与X波

    Fig. 4.  O wave and X wave.

    图 5  w-k色散曲线

    Fig. 5.  w-k dispersion curve.

    图 6  背景电子密度及t = 0.249 ms时刻电场$ {E_x} $分量幅值分布

    Fig. 6.  Background electron density and amplitude distribution of electric field ${{E}_{x}}$ component at t = 0.249 ms.

    图 7  背景电子密度及t = 0.821 ms时刻电场$ {E_x} $${{E}_{y}}$分量幅值分布

    Fig. 7.  Background electron density and distribution of electric field $ {E_x} $ and ${{E}_{y}}$ component amplitude at t = 0.821 ms.

    图 8  背景电子密度及t = 0.90 ms时刻电场$ {E_x} $${{E}_{y}}$分量幅值分布

    Fig. 8.  Background electron density and distribution of electric field $ {E_x} $ and ${{E}_{y}}$ component amplitude at t = 0.90 ms.

    图 9  背景电子密度及t = 1.03 ms时刻电场$ {E_x} $, ${{E}_{y}}$${{E}_{z}}$分量幅值分布

    Fig. 9.  Background electron density and distribution of electric field $ {E_x} $, $ {{E}_{y}} $ and ${{E}_{z}}$ component amplitude at t = 1.03 ms.

    图 10  背景电子密度及t = 1.27 ms时刻电场${{E}_{x}}$, ${{E}_{y}}$$ {E_z} $分量幅值分布

    Fig. 10.  Background electron density and distribution of electric field $ {E_x} $, $ {{E}_{y}} $ and ${{E}_{z}}$ component amplitude at t = 1.27 ms.

    图 11  O波转换区域的静电扰动及$ {{n}_{\text{s}}} $扰动 (a) O波转换区域${\text{|}}{{E}_{z}}{\text{|}}$变化; (b) O波转换区域${\text{|}}{{n}_{\text{s}}}{\text{|}}$变化; (c) Z波转换区域${\text{|}}{{E}_{z}}{\text{|}}$变化; (d) Z波转换区域${\text{|}}{{n}_{\text{s}}}{\text{|}}$变化

    Fig. 11.  Electrostatic disturbance and $ {{n}_{\text{s}}} $ disturbance in O-wave conversion region: (a) Variation of O-wave conversion region with respect to ${\text{|}}{{E}_{z}}{\text{|}}$; (b) variation of O-wave conversion region with respect to ${\text{|}}{{n}_{\text{s}}}{\text{|}}$; (c) variation of Z-wave conversion region with respect to ${\text{|}}{{E}_{z}}{\text{|}}$; (d) variation of Z-wave conversion region with respect to ${\text{|}}{{n}_{\text{s}}}{\text{|}}$.

  • [1]

    Perkins F W, Kaw P K 1971 J. Geophys. Res. 761 282

    [2]

    Gurevich A V, Carlson H C, Medvedev Y V, Zybin K P 2004 J. Plasma Phys. Res. 30 995Google Scholar

    [3]

    Cannon P D, Honary F, Borisov N 2016 J. Geophys. Res. Space. Phys. 121 2755Google Scholar

    [4]

    Close R A, Bauer B S, Wong A Y, Langdon A B, Kruer W L, Mjølhus E 1990 Radio Sci. 25 1341Google Scholar

    [5]

    Eliasson B, Papadopoulos K 2016 J. Geophys. Res. Space Phys. 121 2727Google Scholar

    [6]

    Newman D L, Winglee R M, Robinson P A, Glanz J, Goldman M V 1990 Phys. Fluids B 2 2600Google Scholar

    [7]

    Rietveld M T, Isham B, Grydeland T, Hoz C L, Hagfors T 2002 Adv. Space Res. 29 1363Google Scholar

    [8]

    Eliasson B, Thidé B 2008 J. Geophys. Res. 113 A02313

    [9]

    Eliasson B, Stenflo L 2013 Mod. Phys. Lett. B 27 1330005

    [10]

    Mjølhus E, Hanssen A, DuBois D F 1995 J. Geophys. Res. 100 17527Google Scholar

    [11]

    Eliasson B, Thidé B 2007 J. Geophys. Res. Lett. 34 L06106

    [12]

    Eliasson B, Shao X, Milikh G, Mishin E V, Papadopoulos K 2012 J. Geophys. Res. Space Phys. 117 A10321

    [13]

    刘默然, 周晨, 赵正予, 张援农 2016 电波科学学报 31 743Google Scholar

    Liu M R, Zhou C, Zhao Z Y, Zhang Y N 2016 Chin. J. Radio 31 743Google Scholar

    [14]

    何昉, 赵正予, 倪彬彬, 张援农 2016 电波科学学报 21 525Google Scholar

    He F, Zhao Z Y, Ni B B, Zhang Y N 2016 Chin. J. Radio 21 525Google Scholar

    [15]

    朱婷 2018 硕士学位论文 (镇江: 江苏大学)

    Zhu T 2018 M. S. Thesis (Zhenjiang: Jiangsu University) (in Chinese)

    [16]

    Eliasson B, Milikh G, Shao X, Mishin E V, Papadopoulos K 2015 J. Plasma Phys. 81 415810201Google Scholar

    [17]

    张洋 2014 硕士学位论文 (西安: 西安电子科技大学)

    Zhang Y 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [18]

    樊永永 2013 硕士学位论文 (西安: 西安电子科技大学)

    Fan Y Y 2013 M. S. Thesie (Xi’an: Xidian University) (in Chinese)

    [19]

    杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚 2010 物理学报 59 6089Google Scholar

    Yang L X, Xie Y T, Kong W, Yu P P, Wang G 2010 Acta Phys, Sin. 59 6089Google Scholar

    [20]

    Taflove A, Hagness S C, Piket-May M 2005 Computational Electrodynamics: the Finite-difference Time-domain Method (Academic Press) pp629–669

    [21]

    Mjølhus E, Helmersen E, DuBois D F 2003 Nonlinear Processes Geophys. 10 151Google Scholar

    [22]

    Robinson T R 1989 Phys. Res. 179 153

    [23]

    Mishin E, Hagfors T, Kofman W 1997 J. Geophys. Res. Space Phys. 102 27265Google Scholar

    [24]

    Gondarenko N A, Guzdar P N, Ossakow S L, Bernhardt P A 2003 J. Geophys. Res. Space Phys. 108 1470Google Scholar

    [25]

    Gondarenko N A, Ossakow S L, Milikh G M 2006 Geophys. Res. Lett. 33 399

    [26]

    葛德彪, 闫玉波 2011 电磁波时域有限差分方法 (西安: 西安电子科技大学出版社) 第42—46页

    Ge D B, Yan Y B 2011 The Finite-Difference Time-Domain Method (Xi’an: Xidian University Press) pp42–46 (in Chinese)

    [27]

    李定 2006 等离子体物理学 (北京: 高等教育出版社) 第88页

    Li D 2006 Plasma Physics (Beijing: Higher Education Press) p88 (in Chinese)

    [28]

    Benson R F, Webb P A, Green J L, Carpenter D L, Sonwalkar V S, James H G, Reinisch B W 2006 Ringberg Workshop on High Frequency Waves in Geospace, Ringberg, Germany, July 11–14, 2004 p687

    [29]

    Zhang J, Hai Y F, Wayne S 2018 IEEE Trans. Plasma Sci. 46 2146Google Scholar

    [30]

    Chen J, Yan Y B, Li Q L, Yuan G, Li H Y, Hao S J, Che H Q 2018 12 th International Symposium on Antennas, Propagation and Electromagnetic Theory (ISAPE) Hangzhou, China, December 3–6, 2018 p650

计量
  • 文章访问数:  2901
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-08-26
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回