搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于旋转多普勒效应的自旋目标转速估计方法

印必还 何姿 丁大志

引用本文:
Citation:

基于旋转多普勒效应的自旋目标转速估计方法

印必还, 何姿, 丁大志

Rotating speed estimation of spinning objects based on rotational Doppler effect

Yin Bi-Huan, He Zi, Ding Da-Zhi
PDF
HTML
导出引用
  • 旋转多普勒效应是携带轨道角动量的涡旋电磁波用于旋转目标探测时的一种重要现象. 相比于传统平面波, 旋转多普勒效应使得涡旋电磁波可以沿目标旋转轴方向探测到目标的自旋运动. 然而, 对于特定结构的自旋目标, 利用整数阶轨道角动量波束进行探测仍然存在盲区. 为了拓展基于旋转多普勒效应的探测方案的适用范围, 本文基于时频分析方法, 研究了在分数阶轨道角动量波束正入射和斜入射时自旋目标的转速估计方法. 首先基于理想散射点模型, 推导了其在整数阶和分数阶轨道角动量波束正入射和斜入射时的回波模型, 以及理论时频曲线. 其次, 以三维实际目标为例, 基于矩量法和短时傅里叶变换方法, 得到目标在分数阶轨道角动量波束入射时的回波及其时频图, 并从时频图中提取时频脊及其波动周期, 以此估计目标自旋速度. 结果证明, 分数阶轨道角动量波束无论在正入射还是斜入射情况下均可有效地估计自旋目标的旋转速度, 并且能够克服整数阶轨道角动量波束的探测盲区, 在探测目标自旋运动时具有更广泛的适用性.
    Rotational Doppler effect is an important phenomenon when the vortex electromagnetic wave carrying orbital angular momentum is used to detect a rotating target. Compared with the traditional plane wave case, rotational Doppler effect enables the vortex electromagnetic wave to detect the spin motion along the rotation axis of target. However, there are still some blind zones when the integer orbital angular momentum beams are used to detect specific spinning objects. To expand the application scope of detection scheme based on the rotational Doppler effect, according to the time-frequency analysis, in this paper we study the method of estimating the rotation speed of spinning objects under the normal incidence and oblique incidence of fractional orbital angular momentum beams. Firstly, based on the ideal scattering point model, the echo models are derived under the normal incidence and oblique incidence of integer orbital angular momentum beam and fractional orbital angular momentum beam, respectively, as well as theoretical time-frequency curves. Then taking the three-dimensional practical object for example, the echo under the incidence of fractional orbital angular momentum beams and its time-frequency graph are achieved by using the momentum method and short-time Fourier transform. The time-frequency ridge and its fluctuation period are extracted from the time-frequency graph, thereby estimating the spinning speed of target. The results show that the fractional orbital angular momentum beams can be used to estimate the rotation speed of spinning objects effectively, whether it is normal incidence or oblique incidence, thereby solving the problem about the detection blind zone of integer orbital angular momentum beams, and improving the applicability in detecting spin motion.
      通信作者: 何姿, 15850554055@163.com
    • 基金项目: 国家自然科学基金(批准号: 61931021, 62071231)、江苏省自然科学基金(批准号: BK20211571)和中央高校基本科研业务专项资金(批准号: 30921011207)资助的课题.
      Corresponding author: He Zi, 15850554055@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61931021, 62071231), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20211571), and the Fundamental Research Funds for the Central Universities, China (Grant No. 30921011207).
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Courtial J, Dholakia K, Robertson D A, Allen L, Padgett M J 1998 Phys. Rev. Lett. 80 3217Google Scholar

    [3]

    Courtial J, Robertson D A, Dholakia K, Allen L, Padgett M J 1998 Phys. Rev. Lett. 81 4828Google Scholar

    [4]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antennas Propag. 58 565Google Scholar

    [5]

    Yin B H, He Z, Chen R S 2019 Appl. Comput. Electromagn. Soc. J. 34 1637

    [6]

    Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi, T D, Istomin Ya N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [7]

    Liu K, Cheng Y Q, Yang Z C, Wang H Q, Qin Y L, Li X 2015 IEEE Antennas Wirel. Propag. Lett. 14 711Google Scholar

    [8]

    Zhang C, Chen D, Jiang X F 2017 Sci. Rep. 7 15412Google Scholar

    [9]

    Zhao M Y, Gao X L, Xie M T, Zhai W S, Xu W J, Huang S G, Gu W Y 2016 Opt. Lett. 41 2549Google Scholar

    [10]

    Zheng J Y, Zheng S L, Shao Z L, Shao Z L, Zhang X M 2018 J. Appl. Phys. 124 164907Google Scholar

    [11]

    Gong T, Cheng Y Q, Li X, Chen D C 2018 IEEE Microwave Wireless Compon. Lett. 28 843Google Scholar

    [12]

    Zhou Z L, Cheng Y Q, Liu K, Wang H Q, Qin Y L 2019 IEEE Sens. Lett. 3 1Google Scholar

    [13]

    Yin B H, He Z, Chen R S 2022 IEEE Trans. Antennas Propag. 70 9971Google Scholar

    [14]

    Luo Y, Chen Y J, Zhu Y Z, Li W Y, Zhang Q 2019 IET Radar Sonar Navig. 14 2Google Scholar

    [15]

    李瑞, 李开明, 张群, 梁佳, 罗迎 2021 电子与信息学报 43 547Google Scholar

    Li R, Li K M, Zhang Q, Liang J, Luo Y 2021 J. Electron. Inf. Technol. 43 547Google Scholar

    [16]

    王煜, 刘康, 王建秋, 王宏强, 程永强 2021 雷达学报 10 740Google Scholar

    Wang Y, Liu K, Wang J Q, Wang H Q, Cheng Y Q 2021 J. Radars 10 740Google Scholar

    [17]

    Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013 Science 431 537Google Scholar

    [18]

    Zheng S L, Hui X N, Jin X F, Chi H, Zhang X M 2015 IEEE Trans. Antennas Propag. 63 1530Google Scholar

    [19]

    Berry M V 2004 J. Opt. A:Pure Appl. Opt. 6 259Google Scholar

    [20]

    Liu H Y, Wang Y, Wang J Q, Liu K, Wang H Q 2021 IEEE Antennas Wirel. Propag. Lett. 20 948Google Scholar

  • 图 1  波束轴指向目标旋转中心并垂直于旋转平面的理想入射情况

    Fig. 1.  The ideal illumination with the beam axis pointing to the center of rotation and perpendicular to the plane of rotation.

    图 2  DBoR散射中心分布情况

    Fig. 2.  The distribution of scattering centers for the DBoR.

    图 3  目标旋转平面的偏转

    Fig. 3.  The deflection of the rotating plane.

    图 4  回波频谱 (a) FFT频谱; (b) 理论时频曲线

    Fig. 4.  The frequency spectrum of echo: (a) FFT spectrum; (b) theoretical time-frequency curve.

    图 5  $N = 1$时的回波频谱 (a) $l = 0.5$; (b) $l = 1.5$ (c) $l = 2.5$; (d) $l = 3.5$

    Fig. 5.  Echo frequency spectrums with $N = 1$: (a) $l = 0.5$ ; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$.

    图 6  $N = 2$时的回波频谱 (a) $l = 0.5$; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$

    Fig. 6.  Echo frequency spectrums with $N = 2$: (a) $l = 0.5$; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$.

    图 7  $N = 3$时的回波频谱 (a) $l = 0.5$; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$

    Fig. 7.  Echo frequency spectrums with $N = 3$ and: (a) $l = 0.5$; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$.

    图 8  目标旋转平面偏转时的非理想入射情况

    Fig. 8.  The unideal illumination with the deflection of the rotating plane.

    图 9  $N = 3$时, 旋转平面偏转后的回波频谱 (a) $l = 0.5$; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$

    Fig. 9.  Echo frequency spectrums after the tilt of rotation plane with $N = 3$: (a) $l = 0.5$; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$

    图 10  旋转平面偏转后模式1.5回波时频图及其局部放大

    Fig. 10.  Echo frequency time-frequency graphs of mode 1.5 after the tilt of rotation plane and its local zoom

    图 11  旋转平面偏转后模式2.5回波时频图及其局部放大

    Fig. 11.  Echo frequency time-frequency graphs of mode 2.5 after the tilt of rotation plane and its local zoom

    图 12  风速仪模型

    Fig. 12.  The anemoscope model.

    图 13  辐射电场的相位梯度以及模式谱 (a) $l = 0.5$; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$

    Fig. 13.  Phase gradients and mode spectrums of the radiation electric field with: (a) $l = 0.5$ (b) $l = 1.5$ (c) $l = 2.5$ (d) $l = 3.5$.

    图 14  $N = 3$时的回波频谱 (a) $l = 0.5$; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$

    Fig. 14.  Echo frequency spectrums with $N = 3$: (a) $l = 0.5$; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$

    图 15  $N = 3$时, 旋转平面偏转后的回波频谱 (a) $l = 0.5$; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$

    Fig. 15.  Echo frequency spectrums after the tilt of rotation plane with $N = 3$: (a) $l = 0.5$; (b) $l = 1.5$; (c) $l = 2.5$; (d) $l = 3.5$

    图 16  模式0.5波束正入射目标时的时频图及时频曲线 (a) 时频图; (b) 时频曲线

    Fig. 16.  Time-frequency graph and curve under the normal incidence of the beam with mode 0.5: (a) Time-frequency map; (b) time-frequency curve

    图 17  模式2.5波束斜入射目标时(旋转平面绕Y轴倾斜5°)的时频图及时频曲线 (a) 时频图; (b) 时频曲线

    Fig. 17.  Time-frequency graph and curve under the oblique incidence (the plane of rotation tilts around Y axis with 5°) of the beam with mode 2.5: (a) Time-frequency map; (b) time-frequency curve

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Courtial J, Dholakia K, Robertson D A, Allen L, Padgett M J 1998 Phys. Rev. Lett. 80 3217Google Scholar

    [3]

    Courtial J, Robertson D A, Dholakia K, Allen L, Padgett M J 1998 Phys. Rev. Lett. 81 4828Google Scholar

    [4]

    Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antennas Propag. 58 565Google Scholar

    [5]

    Yin B H, He Z, Chen R S 2019 Appl. Comput. Electromagn. Soc. J. 34 1637

    [6]

    Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi, T D, Istomin Ya N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar

    [7]

    Liu K, Cheng Y Q, Yang Z C, Wang H Q, Qin Y L, Li X 2015 IEEE Antennas Wirel. Propag. Lett. 14 711Google Scholar

    [8]

    Zhang C, Chen D, Jiang X F 2017 Sci. Rep. 7 15412Google Scholar

    [9]

    Zhao M Y, Gao X L, Xie M T, Zhai W S, Xu W J, Huang S G, Gu W Y 2016 Opt. Lett. 41 2549Google Scholar

    [10]

    Zheng J Y, Zheng S L, Shao Z L, Shao Z L, Zhang X M 2018 J. Appl. Phys. 124 164907Google Scholar

    [11]

    Gong T, Cheng Y Q, Li X, Chen D C 2018 IEEE Microwave Wireless Compon. Lett. 28 843Google Scholar

    [12]

    Zhou Z L, Cheng Y Q, Liu K, Wang H Q, Qin Y L 2019 IEEE Sens. Lett. 3 1Google Scholar

    [13]

    Yin B H, He Z, Chen R S 2022 IEEE Trans. Antennas Propag. 70 9971Google Scholar

    [14]

    Luo Y, Chen Y J, Zhu Y Z, Li W Y, Zhang Q 2019 IET Radar Sonar Navig. 14 2Google Scholar

    [15]

    李瑞, 李开明, 张群, 梁佳, 罗迎 2021 电子与信息学报 43 547Google Scholar

    Li R, Li K M, Zhang Q, Liang J, Luo Y 2021 J. Electron. Inf. Technol. 43 547Google Scholar

    [16]

    王煜, 刘康, 王建秋, 王宏强, 程永强 2021 雷达学报 10 740Google Scholar

    Wang Y, Liu K, Wang J Q, Wang H Q, Cheng Y Q 2021 J. Radars 10 740Google Scholar

    [17]

    Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013 Science 431 537Google Scholar

    [18]

    Zheng S L, Hui X N, Jin X F, Chi H, Zhang X M 2015 IEEE Trans. Antennas Propag. 63 1530Google Scholar

    [19]

    Berry M V 2004 J. Opt. A:Pure Appl. Opt. 6 259Google Scholar

    [20]

    Liu H Y, Wang Y, Wang J Q, Liu K, Wang H Q 2021 IEEE Antennas Wirel. Propag. Lett. 20 948Google Scholar

  • [1] 吴航, 陈燎, 李帅, 杜禺璠, 张驰, 张新亮. 百兆赫兹重频的轨道角动量模式飞秒光纤激光器. 物理学报, 2024, 73(1): 014204. doi: 10.7498/aps.73.20231085
    [2] 海迪且木⋅阿布都吾甫尔, 谭乐韬, 于涛, 谢文科, 刘静, 邵铮铮. 基于相干合成涡旋光束的离轴入射转速测量. 物理学报, 2024, 73(16): 168701. doi: 10.7498/aps.73.20240655
    [3] 吴航, 陈燎, 舒学文, 张新亮. 基于飞秒激光加工长周期光栅的全光纤三阶轨道角动量模式的产生. 物理学报, 2023, 72(4): 044201. doi: 10.7498/aps.72.20221928
    [4] 罗勇, 杨党国, 武从海, 李虎, 张树海, 吴军强. 三维空腔流动波系建模及模态演化. 物理学报, 2022, 71(19): 194301. doi: 10.7498/aps.71.20220922
    [5] 罗小军, 石立华, 张琪, 邱实, 李云, 刘毅诚, 段艳涛. 一次人工触发闪电回击过程的光辐射色散特性分析. 物理学报, 2022, 71(17): 179201. doi: 10.7498/aps.71.20220479
    [6] 杨利霞, 刘超, 李清亮, 闫玉波. 斜入射非线性电离层Langmuir扰动的电磁波传播特性. 物理学报, 2022, 71(6): 064101. doi: 10.7498/aps.71.20211204
    [7] 王飞, 魏兵. 分层有耗手征介质中斜入射电磁波的传播矩阵. 物理学报, 2017, 66(6): 064101. doi: 10.7498/aps.66.064101
    [8] 杨阳, 李秀坤. 水下目标声散射信号的时频域盲抽取. 物理学报, 2016, 65(16): 164301. doi: 10.7498/aps.65.164301
    [9] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究. 物理学报, 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [10] 刘亚奇, 刘成城, 赵拥军, 朱健东. 基于时频分析的多目标盲波束形成算法. 物理学报, 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [11] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究. 物理学报, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [12] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究. 物理学报, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [13] 蔡利兵, 王建国. 微波磁场和斜入射对介质表面次级电子倍增的影响. 物理学报, 2010, 59(2): 1143-1147. doi: 10.7498/aps.59.1143
    [14] 杨利霞, 谢应涛, 孔娃, 于萍萍, 王刚. 斜入射分层线性各向异性等离子体电磁散射时域有限差分方法分析. 物理学报, 2010, 59(9): 6089-6095. doi: 10.7498/aps.59.6089
    [15] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究. 物理学报, 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [16] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究. 物理学报, 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [17] 赵廷玉, 叶 子, 张文字, 余飞鸿. 倾斜入射的波前编码系统的点扩散函数扩大效应分析. 物理学报, 2008, 57(1): 200-205. doi: 10.7498/aps.57.200
    [18] 高明伟, 高春清, 何晓燕, 李家泽, 魏光辉. 利用具有轨道角动量的光束实现微粒的旋转. 物理学报, 2004, 53(2): 413-417. doi: 10.7498/aps.53.413
    [19] 傅思祖, 黄秀光, 吴 江, 王瑞荣, 马民勋, 何钜华, 叶君健, 顾 援. 斜入射激光驱动的冲击波在样品中传播特性的实验研究. 物理学报, 2003, 52(8): 1877-1881. doi: 10.7498/aps.52.1877
    [20] 章若冰, 马晶, 庞冬青, 孙敬华, 王清月. 激光晶体角色散对克尔透镜锁模激光器二阶、三阶色散的影响. 物理学报, 2002, 51(2): 262-269. doi: 10.7498/aps.51.262
计量
  • 文章访问数:  2775
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-19
  • 修回日期:  2023-06-21
  • 上网日期:  2023-07-07
  • 刊出日期:  2023-09-05

/

返回文章
返回