-
旋转多普勒效应是携带轨道角动量的涡旋电磁波用于旋转目标探测时的一种重要现象. 相比于传统平面波, 旋转多普勒效应使得涡旋电磁波可以沿目标旋转轴方向探测到目标的自旋运动. 然而, 对于特定结构的自旋目标, 利用整数阶轨道角动量波束进行探测仍然存在盲区. 为了拓展基于旋转多普勒效应的探测方案的适用范围, 本文基于时频分析方法, 研究了在分数阶轨道角动量波束正入射和斜入射时自旋目标的转速估计方法. 首先基于理想散射点模型, 推导了其在整数阶和分数阶轨道角动量波束正入射和斜入射时的回波模型, 以及理论时频曲线. 其次, 以三维实际目标为例, 基于矩量法和短时傅里叶变换方法, 得到目标在分数阶轨道角动量波束入射时的回波及其时频图, 并从时频图中提取时频脊及其波动周期, 以此估计目标自旋速度. 结果证明, 分数阶轨道角动量波束无论在正入射还是斜入射情况下均可有效地估计自旋目标的旋转速度, 并且能够克服整数阶轨道角动量波束的探测盲区, 在探测目标自旋运动时具有更广泛的适用性.Rotational Doppler effect is an important phenomenon when the vortex electromagnetic wave carrying orbital angular momentum is used to detect a rotating target. Compared with the traditional plane wave case, rotational Doppler effect enables the vortex electromagnetic wave to detect the spin motion along the rotation axis of target. However, there are still some blind zones when the integer orbital angular momentum beams are used to detect specific spinning objects. To expand the application scope of detection scheme based on the rotational Doppler effect, according to the time-frequency analysis, in this paper we study the method of estimating the rotation speed of spinning objects under the normal incidence and oblique incidence of fractional orbital angular momentum beams. Firstly, based on the ideal scattering point model, the echo models are derived under the normal incidence and oblique incidence of integer orbital angular momentum beam and fractional orbital angular momentum beam, respectively, as well as theoretical time-frequency curves. Then taking the three-dimensional practical object for example, the echo under the incidence of fractional orbital angular momentum beams and its time-frequency graph are achieved by using the momentum method and short-time Fourier transform. The time-frequency ridge and its fluctuation period are extracted from the time-frequency graph, thereby estimating the spinning speed of target. The results show that the fractional orbital angular momentum beams can be used to estimate the rotation speed of spinning objects effectively, whether it is normal incidence or oblique incidence, thereby solving the problem about the detection blind zone of integer orbital angular momentum beams, and improving the applicability in detecting spin motion.
-
Keywords:
- rotational Doppler effect /
- fractional orbital angular momentum /
- oblique incidence /
- time-frequency analysis
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Courtial J, Dholakia K, Robertson D A, Allen L, Padgett M J 1998 Phys. Rev. Lett. 80 3217Google Scholar
[3] Courtial J, Robertson D A, Dholakia K, Allen L, Padgett M J 1998 Phys. Rev. Lett. 81 4828Google Scholar
[4] Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antennas Propag. 58 565Google Scholar
[5] Yin B H, He Z, Chen R S 2019 Appl. Comput. Electromagn. Soc. J. 34 1637
[6] Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi, T D, Istomin Ya N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar
[7] Liu K, Cheng Y Q, Yang Z C, Wang H Q, Qin Y L, Li X 2015 IEEE Antennas Wirel. Propag. Lett. 14 711Google Scholar
[8] Zhang C, Chen D, Jiang X F 2017 Sci. Rep. 7 15412Google Scholar
[9] Zhao M Y, Gao X L, Xie M T, Zhai W S, Xu W J, Huang S G, Gu W Y 2016 Opt. Lett. 41 2549Google Scholar
[10] Zheng J Y, Zheng S L, Shao Z L, Shao Z L, Zhang X M 2018 J. Appl. Phys. 124 164907Google Scholar
[11] Gong T, Cheng Y Q, Li X, Chen D C 2018 IEEE Microwave Wireless Compon. Lett. 28 843Google Scholar
[12] Zhou Z L, Cheng Y Q, Liu K, Wang H Q, Qin Y L 2019 IEEE Sens. Lett. 3 1Google Scholar
[13] Yin B H, He Z, Chen R S 2022 IEEE Trans. Antennas Propag. 70 9971Google Scholar
[14] Luo Y, Chen Y J, Zhu Y Z, Li W Y, Zhang Q 2019 IET Radar Sonar Navig. 14 2Google Scholar
[15] 李瑞, 李开明, 张群, 梁佳, 罗迎 2021 电子与信息学报 43 547Google Scholar
Li R, Li K M, Zhang Q, Liang J, Luo Y 2021 J. Electron. Inf. Technol. 43 547Google Scholar
[16] 王煜, 刘康, 王建秋, 王宏强, 程永强 2021 雷达学报 10 740Google Scholar
Wang Y, Liu K, Wang J Q, Wang H Q, Cheng Y Q 2021 J. Radars 10 740Google Scholar
[17] Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013 Science 431 537Google Scholar
[18] Zheng S L, Hui X N, Jin X F, Chi H, Zhang X M 2015 IEEE Trans. Antennas Propag. 63 1530Google Scholar
[19] Berry M V 2004 J. Opt. A:Pure Appl. Opt. 6 259Google Scholar
[20] Liu H Y, Wang Y, Wang J Q, Liu K, Wang H Q 2021 IEEE Antennas Wirel. Propag. Lett. 20 948Google Scholar
-
-
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Courtial J, Dholakia K, Robertson D A, Allen L, Padgett M J 1998 Phys. Rev. Lett. 80 3217Google Scholar
[3] Courtial J, Robertson D A, Dholakia K, Allen L, Padgett M J 1998 Phys. Rev. Lett. 81 4828Google Scholar
[4] Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thide B, Forozesh K, Carozzi T D, Isham B 2010 IEEE Trans. Antennas Propag. 58 565Google Scholar
[5] Yin B H, He Z, Chen R S 2019 Appl. Comput. Electromagn. Soc. J. 34 1637
[6] Thide B, Then H, Sjoholm J, Palmer K, Bergman J, Carozzi, T D, Istomin Ya N, Ibragimov N H, Khamitova R 2007 Phys. Rev. Lett. 99 087701Google Scholar
[7] Liu K, Cheng Y Q, Yang Z C, Wang H Q, Qin Y L, Li X 2015 IEEE Antennas Wirel. Propag. Lett. 14 711Google Scholar
[8] Zhang C, Chen D, Jiang X F 2017 Sci. Rep. 7 15412Google Scholar
[9] Zhao M Y, Gao X L, Xie M T, Zhai W S, Xu W J, Huang S G, Gu W Y 2016 Opt. Lett. 41 2549Google Scholar
[10] Zheng J Y, Zheng S L, Shao Z L, Shao Z L, Zhang X M 2018 J. Appl. Phys. 124 164907Google Scholar
[11] Gong T, Cheng Y Q, Li X, Chen D C 2018 IEEE Microwave Wireless Compon. Lett. 28 843Google Scholar
[12] Zhou Z L, Cheng Y Q, Liu K, Wang H Q, Qin Y L 2019 IEEE Sens. Lett. 3 1Google Scholar
[13] Yin B H, He Z, Chen R S 2022 IEEE Trans. Antennas Propag. 70 9971Google Scholar
[14] Luo Y, Chen Y J, Zhu Y Z, Li W Y, Zhang Q 2019 IET Radar Sonar Navig. 14 2Google Scholar
[15] 李瑞, 李开明, 张群, 梁佳, 罗迎 2021 电子与信息学报 43 547Google Scholar
Li R, Li K M, Zhang Q, Liang J, Luo Y 2021 J. Electron. Inf. Technol. 43 547Google Scholar
[16] 王煜, 刘康, 王建秋, 王宏强, 程永强 2021 雷达学报 10 740Google Scholar
Wang Y, Liu K, Wang J Q, Wang H Q, Cheng Y Q 2021 J. Radars 10 740Google Scholar
[17] Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013 Science 431 537Google Scholar
[18] Zheng S L, Hui X N, Jin X F, Chi H, Zhang X M 2015 IEEE Trans. Antennas Propag. 63 1530Google Scholar
[19] Berry M V 2004 J. Opt. A:Pure Appl. Opt. 6 259Google Scholar
[20] Liu H Y, Wang Y, Wang J Q, Liu K, Wang H Q 2021 IEEE Antennas Wirel. Propag. Lett. 20 948Google Scholar
计量
- 文章访问数: 2775
- PDF下载量: 85
- 被引次数: 0