搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一次人工触发闪电回击过程的光辐射色散特性分析

罗小军 石立华 张琪 邱实 李云 刘毅诚 段艳涛

引用本文:
Citation:

一次人工触发闪电回击过程的光辐射色散特性分析

罗小军, 石立华, 张琪, 邱实, 李云, 刘毅诚, 段艳涛

Analysis of optical radiation dispersion characteristics of an artificially triggered lightning return stroke process

Luo Xiao-Jun, Shi Li-Hua, Zhang Qi, Qiu Shi, Li Yun, Liu Yi-Cheng, Duan Yan-Tao
PDF
HTML
导出引用
  • 采用改进的连续小波变换对一组人工触发闪电的回击过程光学辐射信号进行了色散特性分析, 并与经典R-L-C传输线模型的计算结果进行了对比. 结果表明, 回击过程光学辐射信号不同频率分量的到达时间随频率的增加具有非线性变化; 在不同频率分量的到达时间曲线上, 低频段均出现了一个转折频率, 并且转折频率的大小通常在10—25 kHz之间. 该转折频率的存在为评估回击通道特性和电导率提供了一类新的参数化依据, 据此估算了此次触发闪电六次回击过程的通道电导率, 平均变化范围为(0.59—0.96) × 104 S/m, 总体平均值约为0.77 × 104 S/m, 与经典评估结果相似.
    In this paper, improved continuous wavelet transform is used to analyze the dispersion characteristics of a group of optical radiation signals of return stroke in an artificially triggered lightning, and the analysis results are compared with the results calculated by the classical R-L-C transmission line model. The analysis results show that the arrival time of different frequency components of the optical radiation of return stroke presents nonlinear variation with frequency. Moreover, a turning point always appears in the low frequency band on the arrival time curves of different frequency components, and the turning frequency is usually between 10 kHz and 25 kHz. The existence of this turning frequency provides a new kind of parameterization basis for evaluating the characteristic and conductivity of the return stroke channel. Based on this, the channel conductivities of the six return strokes of this triggered lightning are estimated. The average variation ranges from 0.59 × 104 S/m to 0.96 × 104 S/m, and the overall average value is about 0.77 × 104 S/m, which are similar to the classical evaluation results.
      通信作者: 石立华, lihuashi@aliyun.com
    • 基金项目: 国家自然科学基金(批准号: 51977219)、中国博士后科学基金(批准号: 2019M663978)、江苏省自然科学基金(批准号: BK20200584)和国防基础科学研究计划(批准号: JCKYS2021LD1)资助的课题
      Corresponding author: Shi Li-Hua, lihuashi@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51977219), the China Postdoctoral Science Foundation (Grant No. 2019M663978), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200584), and the National Defense Basic Scientific Research Program of China (Grant No. JCKYS2021LD1).
    [1]

    Liang C, Carlson B, Lehtinen N, Cohen M, Marshall R A, Inan U 2014 Geophys. Res. Lett. 41 2561Google Scholar

    [2]

    Cai S, Chen M, Du Y, Qin Z 2017 J. Geophys. Res. Atmos. 122 8686Google Scholar

    [3]

    唐国瑛, 孙竹玲, 蒋如斌, 李丰全, 刘明远, 刘昆, 郄秀书 2020 物理学报 69 189201Google Scholar

    Tang G Y, Sun Z L, Jiang R B, Li F Q, Liu M Y, Liu K, Qie X S 2020 Acta Phys. Sin. 69 189201Google Scholar

    [4]

    李书磊, 邱实, 石立华, 李云, 段艳涛 2019 物理学报 68 165202Google Scholar

    Li S L, Qiu S, Shi L H, Li Y, Duan Y T 2019 Acta Phys. Sin. 68 165202Google Scholar

    [5]

    Heidler F H 2019 IEEE Trans. Electromagn. Compat. 61 644Google Scholar

    [6]

    Hoole P R P, Hoole S R H 1988 IEEE Trans. Magn. 24 3165Google Scholar

    [7]

    Wang D H, Takagi N, Gamerota W R, Uman M A, Hill J D, Jordan D M 2013 J. Geophys. Res. Atmos. 118 9880Google Scholar

    [8]

    Liu L, Yang S Y, Ni G Z, Huang J 2014 IEEE Trans. Magn. 50 149Google Scholar

    [9]

    Ratnamahilan P, Hoole P R P 1993 IEEE Trans. Magn. 29 1839Google Scholar

    [10]

    Schonland B F J, Malan D J, Collens H 1935 Proc. R. Soc. London 152 595

    [11]

    Schonland B F J 1956 Hand. Phys. 22 576

    [12]

    Idone V P, Orville R E 1982 J. Geophys. Res. 87 4903Google Scholar

    [13]

    Wang D H, Takagi N, Watanabe T, Rakov V A, Uman M A 1999 J. Geophys. Res. 104 14369Google Scholar

    [14]

    Wang D H, Takagi N, Uman M A, Jordan D M 2016 J. Geophys. Res. Atmos. 121 14612Google Scholar

    [15]

    Olsen R C, Rakov V A, Jordan D M, Jerauld J, Uman M A, Rambo K J 2006 J. Geophys. Res. 111 D13202Google Scholar

    [16]

    Saba M M F, Schulz W, Warner T A, Campos L Z S, Schumann C, Krider E P, Cummins K L, Orville R E 2010 J. Geophys. Res. 115 D24201

    [17]

    Tran M D, Rakov V A 2016 Sci. Rep. 6 39521Google Scholar

    [18]

    Olsen R C, Jordan D M, Rakov V A, Uman M A, Grimes N 2004 Geophys. Res. Lett. 31 L16107Google Scholar

    [19]

    Jordan D M, Uman M A 1983 J. Geophys. Res. 88 6555Google Scholar

    [20]

    Carvalho F L, Uman M A, Jordan D M, Ngin T 2015 J. Geophys. Res. Atmos. 120 10645

    [21]

    Wang D H, Takagi N, Liu X, Watanabe T, Chihara A 2004 Geophys. Res. Lett. 31 L02111

    [22]

    Kawasaki Z, Nakano M, Takeuti T 1987 Trans. Inst. Electr. Eng. Jpn. 107 47Google Scholar

    [23]

    Carvalho F L, Uman M A, Jordan D M, Moore R C 2017 J. Geophys. Res. Atmos. 122 2334Google Scholar

    [24]

    Rakov V A 1998 J. Geophys. Res. 103 1879Google Scholar

    [25]

    Li Y C, Zhang Q, Luo X J, Si Q, Ran Y Z, Wang J B, Fu S C, Sun Z, Shi L H 2021 IEEE Trans. Electromagn. Compat. 63 1146Google Scholar

    [26]

    Huang L Y, Zhang Q, Wang J B, Duan Y T, Chen H L, Shi L H, Gao C 2020 IEEE Trans. Electromagn. Compat. 62 324Google Scholar

    [27]

    Li Y, Qiu S, Shi L H, Wang T, Zhang Q, Lei Q, Sun Z 2018 Geophys. Res. Lett. 45 569

    [28]

    Taylor A R 1965 J. Geophys. Res. 70 5693Google Scholar

    [29]

    Oetzel G N 1968 J. Geophys. Res. 73 1889Google Scholar

    [30]

    An T T, Yuan P, Chen R R, Zhang N, Wan R B, Zhang M, Liu G R 2021 J. Geophys. Res. Atmos. 126 105851

    [31]

    王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤 2013 物理学报 62 109201Google Scholar

    Wang X J, Yuan P, Cen J Y, Zhang T L, Xue S M, Zhao J C, Xu H 2013 Acta Phys. Sin. 62 109201Google Scholar

    [32]

    王雪娟, 袁萍, 岑建勇, 王杰, 张廷龙 2013 光谱学与光谱分析 33 3192Google Scholar

    Wang X J, Yuan P, Cen J Y, Wang J, Zhang T L 2013 Spectrosc. Spect. Anal. 33 3192Google Scholar

    [33]

    赵金翠, 袁萍, 岑建勇, 李亚珺, 王 杰 2015 光谱学与光谱分析 35 1474Google Scholar

    Zhao J C, Yuan P, Cen J Y, Li Y J, Wang J 2015 Spectrosc. Spect. Anal. 35 1474Google Scholar

  • 图 1  触发闪电试验布局 (a)综合观测平台; (b) LiPOS观测示意图

    Fig. 1.  Layout of the trigger site: (a) Schematic diagram of the comprehensive observation platform; (b) observation diagram of the LiPOS.

    图 2  触发闪电回击光信号 (a) S5通道记录的六次回击归一化波形; (b)第三次回击光信号波形, 插图为S8和S7通道记录的先导波形

    Fig. 2.  Optical signals of the return stroke: (a) Normalized light intensity of all six return strokes recorded by channel S5; (b) optical signals of RS3. The expanded leader observed by channel S8 and S7 is shown in the inset.

    图 3  第三次回击中S8通道分析结果 (a) S8通道不同频率分量百分比; (b)传统CWT时频分析结果; (c)改进CWT时频分析结果; (d)回击和先导光辐射信号的归一化时频图; (e)回击光辐射信号不同频率分量到达时间散点图, 插图为50 kHz以下的散点图

    Fig. 3.  The results of channel S8 of RS3: (a) Energy percentage of the frequency components of channel S8; (b) time-frequency analysis results calculated by traditional CWT method; (c) time-frequency analysis results calculated by improved CWT method; (d) normalized time-frequency graph of the return stroke and the leader optical radiation signal; (e) scatter plot of arrival time of different frequency components of the return stroke optical radiation signal. The inset is the expanded scatter plot below 50 kHz.

    图 4  (a)群速度随频率的变化关系(c为真空光速); (b)群延迟

    Fig. 4.  (a) Relationship between group velocity and frequency (c is the speed of light in vacuum); (b) group delay.

    图 5  (a)初始脉冲及传播后的脉冲; (b)时频分析方法和传输线模型计算结果

    Fig. 5.  (a) Initial impulse and propagated pulse; (b) results calculated by the time-frequency method and the TL model.

    图 6  不同R值对应的群时延曲线

    Fig. 6.  Group delay curves corresponding to different R values

    表 1  传输线模型计算的通道特征参数

    Table 1.  Channel characteristic parameters calculated by the TL model.

    序号转折频率/kHzR/(Ω·m–1)σ/(104 S·m–1)
    1141.253.50.09
    279.432.00.16
    339.811.00.32
    419.950.50.64
    512.020.31.06
    下载: 导出CSV

    表 2  实测数据的通道特征参数

    Table 2.  Channel characteristics of the observed results.

    回击S5通道S6通道S7通道S8通道电导率平均值/104
    转折频率/kHzσ/(104 S·m–1)转折频率/kHzσ/(104 S·m–1)转折频率/kHzσ/(104 S·m–1)转折频率/kHzσ/(104 S·m–1)
    RS117.50.72170.7416.70.7616.50.760.75
    RS2190.6718.70.6818.60.6819.10.660.67
    RS3140.90130.97160.79180.700.84
    RS412.21.0313.60.9213.70.92130.970.96
    RS5210.60200.6322.50.56230.550.59
    RS616.50.76160.7915.70.8015.50.810.79
    电导率平均值0.77
    下载: 导出CSV
  • [1]

    Liang C, Carlson B, Lehtinen N, Cohen M, Marshall R A, Inan U 2014 Geophys. Res. Lett. 41 2561Google Scholar

    [2]

    Cai S, Chen M, Du Y, Qin Z 2017 J. Geophys. Res. Atmos. 122 8686Google Scholar

    [3]

    唐国瑛, 孙竹玲, 蒋如斌, 李丰全, 刘明远, 刘昆, 郄秀书 2020 物理学报 69 189201Google Scholar

    Tang G Y, Sun Z L, Jiang R B, Li F Q, Liu M Y, Liu K, Qie X S 2020 Acta Phys. Sin. 69 189201Google Scholar

    [4]

    李书磊, 邱实, 石立华, 李云, 段艳涛 2019 物理学报 68 165202Google Scholar

    Li S L, Qiu S, Shi L H, Li Y, Duan Y T 2019 Acta Phys. Sin. 68 165202Google Scholar

    [5]

    Heidler F H 2019 IEEE Trans. Electromagn. Compat. 61 644Google Scholar

    [6]

    Hoole P R P, Hoole S R H 1988 IEEE Trans. Magn. 24 3165Google Scholar

    [7]

    Wang D H, Takagi N, Gamerota W R, Uman M A, Hill J D, Jordan D M 2013 J. Geophys. Res. Atmos. 118 9880Google Scholar

    [8]

    Liu L, Yang S Y, Ni G Z, Huang J 2014 IEEE Trans. Magn. 50 149Google Scholar

    [9]

    Ratnamahilan P, Hoole P R P 1993 IEEE Trans. Magn. 29 1839Google Scholar

    [10]

    Schonland B F J, Malan D J, Collens H 1935 Proc. R. Soc. London 152 595

    [11]

    Schonland B F J 1956 Hand. Phys. 22 576

    [12]

    Idone V P, Orville R E 1982 J. Geophys. Res. 87 4903Google Scholar

    [13]

    Wang D H, Takagi N, Watanabe T, Rakov V A, Uman M A 1999 J. Geophys. Res. 104 14369Google Scholar

    [14]

    Wang D H, Takagi N, Uman M A, Jordan D M 2016 J. Geophys. Res. Atmos. 121 14612Google Scholar

    [15]

    Olsen R C, Rakov V A, Jordan D M, Jerauld J, Uman M A, Rambo K J 2006 J. Geophys. Res. 111 D13202Google Scholar

    [16]

    Saba M M F, Schulz W, Warner T A, Campos L Z S, Schumann C, Krider E P, Cummins K L, Orville R E 2010 J. Geophys. Res. 115 D24201

    [17]

    Tran M D, Rakov V A 2016 Sci. Rep. 6 39521Google Scholar

    [18]

    Olsen R C, Jordan D M, Rakov V A, Uman M A, Grimes N 2004 Geophys. Res. Lett. 31 L16107Google Scholar

    [19]

    Jordan D M, Uman M A 1983 J. Geophys. Res. 88 6555Google Scholar

    [20]

    Carvalho F L, Uman M A, Jordan D M, Ngin T 2015 J. Geophys. Res. Atmos. 120 10645

    [21]

    Wang D H, Takagi N, Liu X, Watanabe T, Chihara A 2004 Geophys. Res. Lett. 31 L02111

    [22]

    Kawasaki Z, Nakano M, Takeuti T 1987 Trans. Inst. Electr. Eng. Jpn. 107 47Google Scholar

    [23]

    Carvalho F L, Uman M A, Jordan D M, Moore R C 2017 J. Geophys. Res. Atmos. 122 2334Google Scholar

    [24]

    Rakov V A 1998 J. Geophys. Res. 103 1879Google Scholar

    [25]

    Li Y C, Zhang Q, Luo X J, Si Q, Ran Y Z, Wang J B, Fu S C, Sun Z, Shi L H 2021 IEEE Trans. Electromagn. Compat. 63 1146Google Scholar

    [26]

    Huang L Y, Zhang Q, Wang J B, Duan Y T, Chen H L, Shi L H, Gao C 2020 IEEE Trans. Electromagn. Compat. 62 324Google Scholar

    [27]

    Li Y, Qiu S, Shi L H, Wang T, Zhang Q, Lei Q, Sun Z 2018 Geophys. Res. Lett. 45 569

    [28]

    Taylor A R 1965 J. Geophys. Res. 70 5693Google Scholar

    [29]

    Oetzel G N 1968 J. Geophys. Res. 73 1889Google Scholar

    [30]

    An T T, Yuan P, Chen R R, Zhang N, Wan R B, Zhang M, Liu G R 2021 J. Geophys. Res. Atmos. 126 105851

    [31]

    王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤 2013 物理学报 62 109201Google Scholar

    Wang X J, Yuan P, Cen J Y, Zhang T L, Xue S M, Zhao J C, Xu H 2013 Acta Phys. Sin. 62 109201Google Scholar

    [32]

    王雪娟, 袁萍, 岑建勇, 王杰, 张廷龙 2013 光谱学与光谱分析 33 3192Google Scholar

    Wang X J, Yuan P, Cen J Y, Wang J, Zhang T L 2013 Spectrosc. Spect. Anal. 33 3192Google Scholar

    [33]

    赵金翠, 袁萍, 岑建勇, 李亚珺, 王 杰 2015 光谱学与光谱分析 35 1474Google Scholar

    Zhao J C, Yuan P, Cen J Y, Li Y J, Wang J 2015 Spectrosc. Spect. Anal. 35 1474Google Scholar

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] 廖小瑜, 曹俊诚, 黎华. 太赫兹半导体激光光频梳研究进展. 物理学报, 2020, 69(18): 189501. doi: 10.7498/aps.69.20200399
    [3] 王玉文, 董志伟, 李瀚宇, 周逊, 罗振飞. 典型大气窗口太赫兹波传输特性和信道分析. 物理学报, 2016, 65(13): 134101. doi: 10.7498/aps.65.134101
    [4] 陶在红, 秦媛媛, 孙斌, 孙小菡. 光纤中单光子传输方程的求解及分析. 物理学报, 2016, 65(13): 130301. doi: 10.7498/aps.65.130301
    [5] 杨阳, 李秀坤. 水下目标声散射信号的时频域盲抽取. 物理学报, 2016, 65(16): 164301. doi: 10.7498/aps.65.164301
    [6] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究. 物理学报, 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [7] 刘亚奇, 刘成城, 赵拥军, 朱健东. 基于时频分析的多目标盲波束形成算法. 物理学报, 2015, 64(11): 114302. doi: 10.7498/aps.64.114302
    [8] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [9] 李焜, 方世良, 安良. 基于频散特征的单水听器模式特征提取及距离深度估计研究. 物理学报, 2013, 62(9): 094303. doi: 10.7498/aps.62.094303
    [10] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [11] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [12] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [13] 赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方. 人工触发闪电电流波形特征参数分析. 物理学报, 2009, 58(9): 6616-6626. doi: 10.7498/aps.58.6616
    [14] 魏东宾, 周桂耀, 赵兴涛, 苑金辉, 孟 佳, 王海云, 侯蓝田. 一种新型的多包层光子晶体光纤的分析方法. 物理学报, 2008, 57(5): 3011-3015. doi: 10.7498/aps.57.3011
    [15] 袁 玲, 沈中华, 倪晓武, 陆 建. 激光在近表面弹性性质梯度变化的材料中激发超声波的数值分析. 物理学报, 2007, 56(12): 7058-7063. doi: 10.7498/aps.56.7058
    [16] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性. 物理学报, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [17] 张德生, 董孝义, 张伟刚, 王 志. 用阶跃有效折射率模型研究光子晶体光纤色散特性. 物理学报, 2005, 54(3): 1235-1240. doi: 10.7498/aps.54.1235
    [18] 刘玉玲, 卢振武. 亚波长衍射微透镜色散的数值分析. 物理学报, 2004, 53(6): 1782-1787. doi: 10.7498/aps.53.1782
    [19] 李曙光, 刘晓东, 侯蓝田. 一种晶体光纤基模色散特性的矢量法分析. 物理学报, 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
    [20] 任国斌, 王 智, 娄淑琴, 简水生. 高折射率芯Bragg光纤的色散特性研究. 物理学报, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
计量
  • 文章访问数:  4001
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-17
  • 修回日期:  2022-04-26
  • 上网日期:  2022-08-22
  • 刊出日期:  2022-09-05

/

返回文章
返回