搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型大气窗口太赫兹波传输特性和信道分析

王玉文 董志伟 李瀚宇 周逊 罗振飞

引用本文:
Citation:

典型大气窗口太赫兹波传输特性和信道分析

王玉文, 董志伟, 李瀚宇, 周逊, 罗振飞

Atmospheric window characteristic and channel capacity of THz wave propagation

Wang Yu-Wen, Dong Zhi-Wei, Li Han-Yu, Zhou Xun, Luo Zhen-Fei
PDF
导出引用
  • 在已有大气传输模型的基础上, 发展了新的太赫兹波大气传输衰减与色散模型, 对宽频太赫兹波在真实大气中传输的衰减和色散特性进行了数值模拟研究. 改进太赫兹时域光谱技术, 对0.3-2.0 THz频段太赫兹波的大气传输特性进行了透射光谱测量, 并得到了一组连续吸收参数. 比对发现实验窗口区强度和吸收峰的位置都与计算结果符合得很好. 据此选取了三个可行的信道: 340, 410和667 GHz窗口区, 利用线性色散理论和无线通信原理分别从物理上精确地计算了这些信道的群速色散参数和信道容量, 并分析了影响最大传输数据率的因素-天线增益. 研究结果表明: 太赫兹波大气传输1 km时, 这三个信道群速色散很小, 信号不易被展宽; 最大传输速率达十几Gbps, 高于单模光纤, 但需要更高的天线增益.
    The increasing demand of unoccupied and unregulated bandwidth for wireless communication systems will inevitably lead to the extension of operation frequencies toward the lower THz frequency range. Since atmospheric transmission windows exist in the lower THz frequency range, it can be realized that carrier frequencies of 300 GHz and beyond will be used for communications once the technology for high bitrate data transmission is available. However, the free-space path-loss and the attenuation due to molecules in the atmosphere can significantly reduce the transmittable data rate in the lower THz frequency range.The main factor affecting the behavior of terahertz band is the absorption by water vapor, which not only attenuates the transmitted signal, but also disperses the signal. A new model of the terahertz wave atmospheric propagation of attenuation and dispersion is developed by using the radiation transmission theory and the empirical continuum absorption based on the HITRAN database. Theoretical aspects of absorption are presented, emphasizing those that deserve special attention as frequency increases. The THz wave atmospheric attenuation experimental results and self- and foreign-continuum coefficients obtained with the improved THz-time domain spectroscopy (THz-TDS) technique are analyzed by this model. The intensities and locations of the observed absorption lines are in good agreement with spectral databases. This model accounts for the group velocity dispersion and the total path loss that a wave in the THz band suffers when propagating 1 km distance. The channel capacity of the THz band is investigated by this model under different conditions including antenna gains, channel bandwidth and transmitter power. In order to keep the considerations as general as possible, the derivations are based on simple assumptions and equations. The special requirement for antenna is also discussed.Three communication channels (340 GHz, 410 GHz and 667 GHz) are obtained in terms of the spectrum. The four parameters of the three channels, i.e., available bandwidth, center frequency, dispersion and transmittable data rate, are summarized and quantized. The signals through the atmosphere for the three communication channels within the corresponding atmospheric windows are not easy to broaden due to the low group velocity dispersion; high data rates of up to 10 Gbps or beyond per 1 GHz bandwidth can be transmitted via these channels if the antennas with high gains are used.
      通信作者: 董志伟, dong_zhiwei@iapcm.ac.cn
    • 基金项目: 中国工程物理研究院太赫兹中心(批准号: T2014-06-0209)资助的课题.
      Corresponding author: Dong Zhi-Wei, dong_zhiwei@iapcm.ac.cn
    • Funds: Project supported by the Foundation of Terahertz Research Center of Chinese Academy of Engineering Physics (Grant No. T2014-06-0209).
    [1]

    Cherry S 2004 IEEE Spectr. 41 58

    [2]

    Huang K C, Wang Z 2011 IEEE Microw. Mag. 12 108

    [3]

    Akyildiz I F, Jornet J M, Han C 2014 IEEE Microw. Mag. 21 130

    [4]

    Akyildiz I F, Jornet J M, Han C 2014 Phys. Commun. 12 16

    [5]

    Song H J, Nagatsuma T 2011 IEEE Trans. THz Sci. Technol. 1 256

    [6]

    Inoue M, Hodono M, Oka M, Minamikata Y, Tsuji D, Fujita M, Nagatsuma T 2014 Asia-Pacific Microwave Conference Sendai, Japan, November 4-7, 2014 p1706

    [7]

    Song H J, Kim J Y, Ajito K, Yaita M, Kukutsu N 2014 IEEE Trans. Microw. Theory Tech. 62 600

    [8]

    Liebe H J 1989 Int. J. Infrared Millim. Waves 10 631

    [9]

    Pardo J R, Cernicharo J, Serabyn E 2002 IEEE Trans. Antennas Propag. 49 1683

    [10]

    Paine S https://www.cfa.harvard.edu/sma/memos/152.pdf [2014-3-3]

    [11]

    Yang Y H, Mandehgar M, Grischkowsky D 2014 Opt. Express 22 4388

    [12]

    Slocum D M, Slingerland E J, Giles R H, Goyette T M 2015 J. Quant. Spectrosc. Radiat. Transfer 159 69

    [13]

    Wang Y W, Dong Z W, Li H Y, Zhou X, Deng H, Luo Z F 2015 J. Infrared Millim. Waves 34 557 (in Chinese) [王玉文, 董志伟, 李瀚宇, 周逊, 邓琥, 罗振飞 2015 红外与毫米波学报 34 557]

    [14]

    Koshelev M A, Serov E A, Parshin V V, Tretyakov M Y 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2704

    [15]

    Rosenkranz P W 1998 Radio Sci. 33 919

    [16]

    Agrawal G P 2002 Fiber-Optic Communication Systems (3rd Ed.) (New York: Wiley) pp38-47

    [17]

    Schneider T 2015 J. Infrared, Millim. THz Waves 36 159

    [18]

    Mottonen V S, Raisanen A V 2004 34th European Microwave Conference Amsterdam, Netherlands, October 12-14, 2004 p1145

  • [1]

    Cherry S 2004 IEEE Spectr. 41 58

    [2]

    Huang K C, Wang Z 2011 IEEE Microw. Mag. 12 108

    [3]

    Akyildiz I F, Jornet J M, Han C 2014 IEEE Microw. Mag. 21 130

    [4]

    Akyildiz I F, Jornet J M, Han C 2014 Phys. Commun. 12 16

    [5]

    Song H J, Nagatsuma T 2011 IEEE Trans. THz Sci. Technol. 1 256

    [6]

    Inoue M, Hodono M, Oka M, Minamikata Y, Tsuji D, Fujita M, Nagatsuma T 2014 Asia-Pacific Microwave Conference Sendai, Japan, November 4-7, 2014 p1706

    [7]

    Song H J, Kim J Y, Ajito K, Yaita M, Kukutsu N 2014 IEEE Trans. Microw. Theory Tech. 62 600

    [8]

    Liebe H J 1989 Int. J. Infrared Millim. Waves 10 631

    [9]

    Pardo J R, Cernicharo J, Serabyn E 2002 IEEE Trans. Antennas Propag. 49 1683

    [10]

    Paine S https://www.cfa.harvard.edu/sma/memos/152.pdf [2014-3-3]

    [11]

    Yang Y H, Mandehgar M, Grischkowsky D 2014 Opt. Express 22 4388

    [12]

    Slocum D M, Slingerland E J, Giles R H, Goyette T M 2015 J. Quant. Spectrosc. Radiat. Transfer 159 69

    [13]

    Wang Y W, Dong Z W, Li H Y, Zhou X, Deng H, Luo Z F 2015 J. Infrared Millim. Waves 34 557 (in Chinese) [王玉文, 董志伟, 李瀚宇, 周逊, 邓琥, 罗振飞 2015 红外与毫米波学报 34 557]

    [14]

    Koshelev M A, Serov E A, Parshin V V, Tretyakov M Y 2011 J. Quant. Spectrosc. Radiat. Transfer 112 2704

    [15]

    Rosenkranz P W 1998 Radio Sci. 33 919

    [16]

    Agrawal G P 2002 Fiber-Optic Communication Systems (3rd Ed.) (New York: Wiley) pp38-47

    [17]

    Schneider T 2015 J. Infrared, Millim. THz Waves 36 159

    [18]

    Mottonen V S, Raisanen A V 2004 34th European Microwave Conference Amsterdam, Netherlands, October 12-14, 2004 p1145

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] 段磊, 徐润亲, 宋云波, 谭姝丹, 梁成斌, 徐帆江, 刘朝晖. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究. 物理学报, 2023, 72(10): 104203. doi: 10.7498/aps.72.20222464
    [3] 吴曼瑾, 姚柏志, 石粒力, 陈本纹, 吴敬波, 张彩虹, 金飚兵, 陈健, 吴培亨. 用于超导太赫兹探测器的低温标准黑体辐射源. 物理学报, 2022, 71(16): 168702. doi: 10.7498/aps.71.20220103
    [4] 廖小瑜, 曹俊诚, 黎华. 太赫兹半导体激光光频梳研究进展. 物理学报, 2020, 69(18): 189501. doi: 10.7498/aps.69.20200399
    [5] 孟淼, 严德贤, 李九生, 孙帅. 基于嵌套三角形包层结构负曲率太赫兹光纤的研究. 物理学报, 2020, 69(16): 167801. doi: 10.7498/aps.69.20200457
    [6] 张瑞雪, 李洪国, 李宗国. 基于光场一阶关联的时域成像. 物理学报, 2019, 68(10): 104202. doi: 10.7498/aps.68.20190184
    [7] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, 2019, 68(10): 109501. doi: 10.7498/aps.68.20190217
    [8] 耿易星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆. 色散对双晶交叉偏振滤波输出特性的影响. 物理学报, 2017, 66(4): 040601. doi: 10.7498/aps.66.040601
    [9] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [10] 陶在红, 秦媛媛, 孙斌, 孙小菡. 光纤中单光子传输方程的求解及分析. 物理学报, 2016, 65(13): 130301. doi: 10.7498/aps.65.130301
    [11] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法. 物理学报, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [12] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [13] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [14] 吕金光, 梁静秋, 梁中翥. 空间调制傅里叶变换光谱仪分束器色散特性研究. 物理学报, 2012, 61(14): 140702. doi: 10.7498/aps.61.140702
    [15] 韩庆生, 乔耀军, 李蔚. 基于全光时域分数阶傅里叶变换的光脉冲最小损伤传输新方法. 物理学报, 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [16] 闫海峰, 俞重远, 田宏达, 刘玉敏, 韩利红. 八角光子晶体光纤传输特性与非线性特性研究. 物理学报, 2010, 59(5): 3273-3277. doi: 10.7498/aps.59.3273
    [17] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [18] 肖海林, 欧阳缮, 聂在平. 多输入多输出量子密钥分发信道容量研究. 物理学报, 2009, 58(10): 6779-6785. doi: 10.7498/aps.58.6779
    [19] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原. 物理学报, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [20] 李曙光, 周桂耀, 邢光龙, 侯蓝田, 王清月, 栗岩锋, 胡明列. 微结构光纤中超短激光脉冲传输的数值模拟. 物理学报, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
计量
  • 文章访问数:  7606
  • PDF下载量:  480
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-21
  • 修回日期:  2016-04-16
  • 刊出日期:  2016-07-05

/

返回文章
返回