-
本文研究了利用聚焦透镜来提高超几何高斯二型(Hypergeometric-Gaussian type-II,HyGG-II)光束在海洋湍流中传输时的信道容量的方法。首先推导得到了使用聚焦透镜之后HyGG-II光束在海洋湍流中的信道容量表达式,随后仿真分析了不同光源参数和海洋湍流参数对信道容量的影响,并与未加透镜时HyGG-II光束以及拉盖尔高斯光束的信道容量进行了对比。此外为了探究聚焦透镜增强信道容量的原因,还仿真分析了聚焦HyGG-II光束的光强随传输距离的分布。结果表明:通过使用聚焦透镜可以使HyGG-II光束的信道容量在一定传输距离范围之内获得不同程度的增强,最佳增强效果出现在光强的最大会聚位置附近。通过增加光波长、调节聚焦透镜的焦距或HyGG-II光束的束腰半径,还可以使增强效果进一步被改善。在小单位质量动能耗散率和大温度均方差耗散率的海洋湍流环境中,使用聚焦透镜可以得到更明显的信道容量增强效果。与拉盖尔高斯光束相比,传输相同距离时不管是否使用聚焦透镜HyGG-II光束的信道容量都更好。本文的研究结果可以为提高基于涡旋光束的水下无线光通信系统性能提供一定的参考。In this paper, we investigate the channel capacity of the Hypergeometric-Gaussian type-II (HyGG-II) beam propagating in ocean turbulence. Furthermore, we propose a method utilizing a focusing mirror to enhance the channel capacity. Comparison among focused HyGG-II beam, unfocused HyGG-II beam and Laguerre Gaussian beam is also carried out. The results indicate that the employment of focusing mirrors is effective in enhancing the channel capacity, however, the corresponding transmission distance range is restricted to approximately 100 meters. Optimal enhancement is observed near the convergence point of the HyGG-II beam as focused by mirrors. By increasing the wavelength and adjusting the focal length of the focusing mirror or the waist radius of the HyGG-II beam, further improvements in channel capacity can be achieved. Moreover, when the HyGG-II beam is transmitted in oceanic turbulence characterized by a smaller dissipation rate of kinetic energy per unit mass and a larger dissipation rate of mean-squared temperature, the enhancement effect of the focusing mirrors on the channel capacity is more pronounced. Compared to Laguerre Gaussian beam, HyGG-II beams exhibit superior channel capacity at the same transmission distance, irrespective of whether focusing mirrors are used. The findings can serve as a reference for the design of underwater wireless optical communication system based on HyGG-II-beam.
-
Keywords:
- Hypergeometric-Gaussian type-II beam /
- focusing mirror /
- ocean turbulence /
- channel capacity
-
[1] Xu L F, Zhou Z C, Ma X D, Korotkova O, Wang F 2024 Opt. Lett. 49 246
[2] Guo Y, Lyu H, Ding C L, Yuan C Z, Jin R B 2025 Acta Phys. Sin. 74 014203 (in Chinese)[郭岩, 吕恒, 丁春玲, 袁晨志, 金瑞波 2025 物理学报 74 014203]
[3] Pan Y T, Wang P, Wang W, Li S, Cheng M J, Guo L X 2021 Opt.Express 29 12644
[4] Zhan H C, Wang L, Wang W N 2022 J. Lightwave Technol. 40 4129
[5] Zhan H C, Wang L, Wang W N, Zhao S M 2023 J. Opt. Soc. Am. B 40 187
[6] Wang H, Li H, Zhou Y L, Wang P 2022 Opt. Eng. 61 046102
[7] Wang M J, Liu H Z, Zhang J L, Wang J 2023 Acta Opt. Sin. 43 2401004 (in Chinese)[王明军, 刘豪振, 张佳琳, 王姣 2023 光学学报 43 2401004]
[8] Liu C X, Sun J M, Shang X N, Gu X N, Li W D 2025 Laser Optoelectron. Prog. 62 0301002 (in Chinese) [刘昌勋, 孙嘉敏, 商祥年, 顾永建, 李文东 2025 激光与光电子学进展 62 0301002]
[9] Karimi E, Piccirillo B, Marrucci L, Santamato E 2008 Opt.Express 16 21069
[10] Jin G, Bian L R, Huang L, Tang B 2020 Opt. Laser Technol. 126 106124
[11] Khannous F, Ebrahim A A A, Belafhal A 2016 Chin. Phys. B 25 044206
[12] Gradshteyn I S, Ryzhik I M 2014 Table of integrals, series, and products, (New York: Academic Press) p325-331
[13] Torner L, Torres J, Carrasco S 2005 Opt. Express 13 873
[14] Yang H B, Yan Q Z, Wang P, Hu L F, Zhang Y X 2022 Opt. Express 30 9053
[15] Wang X, Wang L, Zhao S 2021 J. Mar. Sci. Eng. 9 442
[16] Nikishov V V, Nikishov V I 2020 Int. J. Fluid Mech. Res. 27 82
[17] Paterson C 2005 Phys. Rev. Lett. 94 153901
[18] Wang S L, Yang D H, Zhu Y, Zhang Y X 2021 Appl. Opt. 60 4135
[19] Tong Z J, Yang X Q, Chen X, Zhang H, Zhang Y F, Zou H W, Zhao Y F, Xu J 2021 Opt. Express 29 20262
[20] Zhou H Y, Zhang M L, Wang X Z, Ren X M 2022 J. Lightwave Technol. 40 3654
[21] Han X T, Li P, Li G Y, Chang C, Jia S W, Xie Z, Liao P X, Nie W C, Xie X P 2023 Photonics 10 451
[22] Zhang T Y, Fei C, Wang Y, Du J, Xie Y T, Zhang F, Tian J H, Zhang G W, Wang G X, Hong X J, He S L 2024 Opt. Express 32 36207
[23] Ma Z Q, Gao G J, Zhang J L, Guo Y G, Zhang F, Huang S G 2025 J. Lightwave Technol. 43 1140
计量
- 文章访问数: 30
- PDF下载量: 0
- 被引次数: 0