搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

部分相干环状偏心光束通过海洋湍流的传输特性

杨婷 季小玲 李晓庆

引用本文:
Citation:

部分相干环状偏心光束通过海洋湍流的传输特性

杨婷, 季小玲, 李晓庆

Propagation characteristics of partially coherent decentred annular beams propagating through oceanic turbulence

Yang Ting, Ji Xiao-Ling, Li Xiao-Qing
PDF
导出引用
  • 推导出了部分相干环状偏心光束在海洋湍流中传输的平均光强和光束质心位置的解析表达式, 并给出了最大光强位置满足的传输方程. 研究发现: 经足够长距离传输后, 在自由空间中最大光强位置比光束质心更靠近传输z轴, 并且其位置随着光束相干参数的增大而靠近传输z 轴, 随着光束偏心参数和遮拦比的增大而远离传输z轴. 但是, 在海洋湍流中最大光强位置趋于质心位置, 并且海洋湍流的增强会加速最大光强位置趋于质心位置的进程. 在海洋湍流中光束的相干性对光束传输特性的影响明显减小. 另一方面, 光束质心位置与光束的相干性、光束传输距离以及海洋湍流均无关系, 并且光束质心位置随着光束偏心参数和遮拦比的增大而远离传输z 轴. 所得结果对工作于水下湍流环境中的部分相干环状偏心光束的应用具有重要意义.
    The analytical expressions for the average intensity and the centroid position of partially coherent decentred annular beams propagating through oceanic turbulence are derived, and the propagation equation of the position of the maximum intensity is also given. Changes of the average intensity, the centroid position and the position of the maximum intensity of partially coherent decentred annular beams during propagation are studied in detail. It is shown that both in free space and in oceanic turbulence, the position of the maximum intensity moves to the propagation z-axis with increasing the propagation distance, and is kept unchanged when the propagation distance is large enough. Furthermore, in free space the position of the maximum intensity is closer to the propagation z-axis than to the centroid position when the propagation distance is large enough. The position of the maximum intensity is closer to the propagation z-axis with increasing the correlation parameter, and far from the propagation z-axis with increasing the decentered parameter and the obscure ratio. However, in oceanic turbulence the position of the maximum intensity is close to the centroid position when the propagation distance is large enough, and the evolution is speeded with increasing the strength of oceanic turbulence. The influence of the beam coherence on propagation characteristics decreases due to oceanic turbulence. On the other hand, the centroid position is independent of the beam coherence, the propagation distance and the oceanic turbulence. The centroid position is far from the propagation z-axis with increasing the decentered parameter and the obscure ratio. In addition, the hollow core of partially coherent decentred annular beams is filled up as the propagation distance increases, and the evolution is speeded with increasing the strength of oceanic turbulence. The results obtained in this paper are very useful for applications of partially coherent decentred annular beams in oceanic turbulence.
    • 基金项目: 国家自然科学基金(批准号: 61475105)和四川高校科研创新团队建设计划(批准号: 12TD008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475105) and the Financial Support from Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province, China (Grant No. 12TD008).
    [1]

    Snow J B, Flatley J P, Freeman D E, Landry M A, Lindstrom C E, Longacre J R, Schwartz J A 1992 Proc. SPIE 1750 419

    [2]

    Arnon S, Kedar D 2009 J. Opt. Soc. Am. A 26 530

    [3]

    Hanson F, Lasher M 2010 Appl. Opt. 49 3224

    [4]

    Anddrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham,Washington: SPIE Press)

    [5]

    Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592

    [6]

    Shirai T, Dogariu A, Wolf E 2003 Opt. Lett. 28 610

    [7]

    Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 物理学报 56 6754]

    [8]

    Dan Y Q, Zhang B 2009 Opt. Lett. 34 563

    [9]

    Mao H D, Zhao D M 2010 Opt. Express 18 1741

    [10]

    Zhou G Q 2011 Opt. Express 19 3945

    [11]

    Li Y Q Wu Z S 2012 Chin. Phys. B 21 054203

    [12]

    He X M, L B D 2011 Chin. Phys. B 20 094210

    [13]

    Ma Y, Ji X L 2013 Acta Phys. Sin. 62 094214 (in Chinese) [马媛, 季小玲 2013 物理学报 62 094214]

    [14]

    Dou L Y, Ji X L, Li P Y 2012 Opt. Express 20 8417

    [15]

    Wu Z S, Li Y Q 2011 J. Opt. Soc. Am. A 28 1531

    [16]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

    [17]

    Korotkova O, Farwell N 2011 Opt. Commun. 284 1740

    [18]

    Shchepakina E, Farwell N, Korotkova O 2011 Appl. Phys. B 105 415

    [19]

    Tang M, Zhao D M 2013 Appl. Phys. B 111 665

    [20]

    Zhou Y, Chen Q, Zhao D M 2014 Appl. Phys. B 114 475

    [21]

    Ata, Baykal Y 2014 J. Opt. Soc. Am. A 31 1552

    [22]

    Huang Y P, Zhang B, Gao Z H, Zhao G P, Duan Z C 2014 Opt. Express 22 17723

    [23]

    Lu L, Ji X L, Li X Q, Deng J P, Chen H, Yang T 2014 Optik 125 7154

    [24]

    Born M, Wolf E 1997 Principles of Optics (6th Ed.) (Cambridge: Cambridge University Press)

    [25]

    Li Y 2002 Opt. Lett. 27 1007

  • [1]

    Snow J B, Flatley J P, Freeman D E, Landry M A, Lindstrom C E, Longacre J R, Schwartz J A 1992 Proc. SPIE 1750 419

    [2]

    Arnon S, Kedar D 2009 J. Opt. Soc. Am. A 26 530

    [3]

    Hanson F, Lasher M 2010 Appl. Opt. 49 3224

    [4]

    Anddrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham,Washington: SPIE Press)

    [5]

    Gbur G, Wolf E 2002 J. Opt. Soc. Am. A 19 1592

    [6]

    Shirai T, Dogariu A, Wolf E 2003 Opt. Lett. 28 610

    [7]

    Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 物理学报 56 6754]

    [8]

    Dan Y Q, Zhang B 2009 Opt. Lett. 34 563

    [9]

    Mao H D, Zhao D M 2010 Opt. Express 18 1741

    [10]

    Zhou G Q 2011 Opt. Express 19 3945

    [11]

    Li Y Q Wu Z S 2012 Chin. Phys. B 21 054203

    [12]

    He X M, L B D 2011 Chin. Phys. B 20 094210

    [13]

    Ma Y, Ji X L 2013 Acta Phys. Sin. 62 094214 (in Chinese) [马媛, 季小玲 2013 物理学报 62 094214]

    [14]

    Dou L Y, Ji X L, Li P Y 2012 Opt. Express 20 8417

    [15]

    Wu Z S, Li Y Q 2011 J. Opt. Soc. Am. A 28 1531

    [16]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

    [17]

    Korotkova O, Farwell N 2011 Opt. Commun. 284 1740

    [18]

    Shchepakina E, Farwell N, Korotkova O 2011 Appl. Phys. B 105 415

    [19]

    Tang M, Zhao D M 2013 Appl. Phys. B 111 665

    [20]

    Zhou Y, Chen Q, Zhao D M 2014 Appl. Phys. B 114 475

    [21]

    Ata, Baykal Y 2014 J. Opt. Soc. Am. A 31 1552

    [22]

    Huang Y P, Zhang B, Gao Z H, Zhao G P, Duan Z C 2014 Opt. Express 22 17723

    [23]

    Lu L, Ji X L, Li X Q, Deng J P, Chen H, Yang T 2014 Optik 125 7154

    [24]

    Born M, Wolf E 1997 Principles of Optics (6th Ed.) (Cambridge: Cambridge University Press)

    [25]

    Li Y 2002 Opt. Lett. 27 1007

  • [1] 张荣香, 代华德, 刘涛, 王唯钰, 周允城, 毕慧聪. 聚焦超几何高斯二型光束在海洋湍流中的信道容量. 物理学报, 2025, 74(11): . doi: 10.7498/aps.74.20250306
    [2] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [3] 贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究. 物理学报, 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [4] 王飞, 余佳益, 刘显龙, 蔡阳健. 部分相干光束经过湍流大气传输研究进展. 物理学报, 2018, 67(18): 184203. doi: 10.7498/aps.67.20180877
    [5] 吴彤, 季小玲, 罗燏娟. 海洋湍流中自适应光学成像系统特征参量研究. 物理学报, 2018, 67(5): 054206. doi: 10.7498/aps.67.20171851
    [6] 吴彤, 季小玲, 李晓庆, 王欢, 邓宇, 丁洲林. 海洋湍流中光波特征参量和短期光束扩展的研究. 物理学报, 2018, 67(22): 224206. doi: 10.7498/aps.67.20181033
    [7] 尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军. 汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析. 物理学报, 2018, 67(11): 114201. doi: 10.7498/aps.67.20180155
    [8] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性. 物理学报, 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [9] 朱清智, 沈栋辉, 吴逢铁, 何西. 部分相干光对周期性局域空心光束的影响. 物理学报, 2016, 65(4): 044103. doi: 10.7498/aps.65.044103
    [10] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [11] 杨爱林, 林强. 部分相干Airy光束在湍流大气中传输时的偏振特性. 物理学报, 2014, 63(20): 204101. doi: 10.7498/aps.63.204101
    [12] 钱仙妹, 朱文越, 饶瑞中. 伪部分相干高斯-谢尔模型光束在湍流大气中传播的闪烁孔径平滑效应. 物理学报, 2013, 62(4): 044203. doi: 10.7498/aps.62.044203
    [13] 邓金平, 季小玲, 陆璐. 多色部分相干偏心光束在non-Kolmogorov湍流中的传输. 物理学报, 2013, 62(14): 144211. doi: 10.7498/aps.62.144211
    [14] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [15] 季小玲. 湍流对部分相干双曲余弦高斯光束的瑞利区间的影响. 物理学报, 2011, 60(6): 064207. doi: 10.7498/aps.60.064207
    [16] 季小玲. 部分相干平顶光束通过湍流大气传输的等效曲率半径. 物理学报, 2010, 59(6): 3953-3958. doi: 10.7498/aps.59.3953
    [17] 李晋红, 杨爱林, 吕百达. 部分相干厄米-双曲正弦-高斯光束通过湍流大气传输的平均光强分布演化和角扩展. 物理学报, 2009, 58(1): 674-683. doi: 10.7498/aps.58.674
    [18] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [19] 王 涛, 蒲继雄. 部分相干空心光束在湍流介质中的传输特性. 物理学报, 2007, 56(11): 6754-6759. doi: 10.7498/aps.56.6754
    [20] 季小玲, 黄太星, 吕百达. 部分相干双曲余弦高斯光束通过湍流大气的光束扩展. 物理学报, 2006, 55(2): 978-982. doi: 10.7498/aps.55.978
计量
  • 文章访问数:  6522
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-22
  • 修回日期:  2015-05-30
  • 刊出日期:  2015-10-05

/

返回文章
返回