搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋湍流中自适应光学成像系统特征参量研究

吴彤 季小玲 罗燏娟

引用本文:
Citation:

海洋湍流中自适应光学成像系统特征参量研究

吴彤, 季小玲, 罗燏娟

Characteristic parameters of adaptive optical imaging system in oceanic turbulence

Wu Tong, Ji Xiao-Ling, Luo Yu-Juan
PDF
导出引用
  • 随着水下光通信、传感和激光雷达等应用的发展,研究水下光学系统成像特性具有重要意义.本文研究了海洋湍流对自适应光学成像系统特征参量(如Strehl比、Greenwood时间常数和等晕角)的影响.推导出了海洋湍流中短曝光成像Strehl比的近似解析表达式,并证明:除了在近场DG/r0=1附近外(DG和r0分别为光学系统的光瞳直径和海洋湍流中可见参数),该近似公式均可保证足够的精度.此外,还得到了海洋湍流中Greenwood时间常数和等晕角的表达式.研究表明:随着海水盐度变化引起的海洋湍流逐渐占主导地位时,这三个特征参量值均减小;随着海水湍流动能耗散率的减小或海水湍流温度方差耗散率的增大,这三个特征参量值也均减小.本文研究结果对工作于水下湍流环境中自适应光学成像系统应用具有理论参考意义.
    Since recently one is interested in underwater communications, imaging, sensing and lidar appeared, it is important to study characteristic parameters of the adaptive optical imaging system in oceanic turbulence. Until now, the characteristic parameters of the adaptive optical imaging system in atmospheric turbulence have investigated widely and in depth, but those in oceanic turbulence have been examined seldom. It is known that the atmospheric turbulence is induced by the temperature fluctuation. However, the oceanic turbulence is induced by both the temperature fluctuation and the salinity fluctuation. The temperature and salinity spectra have similar ''bumped'' profiles, with bumps occurring at different wave numbers. Thus, the behavior of light propagation in oceanic turbulence is very different from that in atmospheric turbulence. In this paper, the influence of oceanic turbulence on characteristic parameters (i.e., strehl ratio, Greenwood time constant, and isoplanatic>) of the adaptive optical imaging system is studied. The approximate analytical expression of the Strehl ratio for the short-exposure imaging case is derived. It is demonstrated by the numerical calculation method that this Strehl ratio approximate expression is accurate enough except the near field when DG/r0=1 (where DG is the pupil diameter of the optical system, r0 is the seeing parameter in oceanic turbulence), and the relative error maximum of this Strehl ratio approximate expression in the far field is much smaller than that in the near field. In addition, the analytical expressions of the Greenwood time constant and the isoplanatic> in oceanic turbulence are also obtained in this paper. It is shown that the values of the three characteristic parameters (i.e., Strehl ratio, the Greenwood time constant and the isoplanatic>) decrease when salinity-induced optical turbulence dominates gradually. The Strehl ratio, the Greenwood time constant and the isoplanatic> also decrease as the rate of dissipation of kinetic energy per unit mass of seawater decreases or the rate of dissipation of mean-squared temperature increases. It is known that the isoplanatic> at wavelength λ=0.5 μm are roughly 7-10 μrad for a nearly vertical path from Earth to space in atmospheric turbulence. However, it is shown in this paper that the isoplanatic> may be on the order of μrad after 100 m propagation distance in oceanic turbulence. Therefore, the influence of oceanic turbulence on the isoplanatic> is very large. The results obtained in this paper will be useful in the applications of adaptive optics imaging systems involving oceanic turbulence channels.
      通信作者: 季小玲, jiXL100@163.com
    • 基金项目: 国家自然科学基金(批准号:61475105,61775152)资助的课题.
      Corresponding author: Ji Xiao-Ling, jiXL100@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475105, 61775152).
    [1]

    Guo Y M, Rao C H, Bao H, Zhang A, Wei K 2014 Acta Phys. Sin. 63 149501 (in Chinese) [郭友明, 饶长辉, 鲍华, 张昂, 魏凯 2014 物理学报 63 149501]

    [2]

    Booth M J 2014 Light-Sci. Appl. 3 e165

    [3]

    Miller D T, Kocaoglu O P, Wang Q, Lee S 2011 Eye 25 321

    [4]

    Jiang W H 2006 Chin. J. Nature 28 7 (in Chinese) [姜文汉 2006 自然杂志 28 7]

    [5]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (2nd Ed.) (Bellingham, WA: SPIE Optical Engineering Press) pp606–623

    [6]

    Mahajan V N 2005 J. Opt. Soc. Am. A 22 1824

    [7]

    Chen T J, Zhou W C, Wang F, Huang D Q, Lu Y H, Zhang J Z 2015 Acta Phys. Sin. 64 134207 (in Chinese) [陈天江, 周文超, 王峰, 黄德权, 鲁燕华, 张建柱 2015 物理 学报 64 134207]

    [8]

    Zong F, Qiang X W, Wu M, Chang J Y, Feng S L 2014 Acta Opt. Sin. 34 16 (in Chinese) [宗飞, 强希文, 吴敏, 常金勇, 封双连 2014 光学学报 34 16]

    [9]

    Fusco T, Conan J M 2004 J. Opt. Soc. Am. A 21 1277

    [10]

    Greenwood D P 1977 J. Opt. Soc. Am. 67 390

    [11]

    Qu Q, Cao Z L, Hu L F, Zhang H S, Zhao J L, Xuan L 2015 Chin. Opt. 8 121 (in Chinese) [瞿青, 曹召良, 胡立 发, 张红胜, 赵晶丽, 宣丽 2015 中国光学 8 121]

    [12]

    Loos G C, Hogge C B 1979 Appl. Opt. 18 2654

    [13]

    Ding X K, Rong J, Bai H, Wang X, Shen J E, Li F 2008 Chin. Opt. Lett. 6 1

    [14]

    Yu L K, Xu J, Hong S, Hou Z H, Yi W 2014 Opt. Lett. 39 789

    [15]

    Yu L K, Hou Z H, Zhang S C, Xu J, Yi W 2015 Opt. Eng. 54 024105

    [16]

    Bogucki D J, Domaradzki J A, Ecke R E, Truman C R 2004 Appl. Opt. 43 5662

    [17]

    Hou W L, Woods S, Jarosz E, Goode W, Weidemann A 2012 Appl. Opt. 51 2678

    [18]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

    [19]

    Lu L, Ji X L, Baykal Y 2014 Opt. Express 22 027112

    [20]

    Pu H, Ji X L 2016 J. Opt. 18 105704

    [21]

    Lu W, Liu L, Sun J 2006 J. Opt. A: Pure Appl. Opt. 8 1052

    [22]

    Hill R J 1978 J. Fluid Mech. Res. 88 541

    [23]

    Hill R J 1978 J. Opt. Soc. Amer. 68 1067

    [24]

    Korotkova O, Farwell N, Shchepakina E 2012 Wave Random Complex 22 260

    [25]

    Tang M M, Zhao D M 2013 Appl. Phys. B 111 665

    [26]

    Baykal Y 2016 Opt. Commun. 375 15

    [27]

    Yang T, Ji X L, Li X Q 2015 Acta Phys. Sin. 64 204206 (in Chinese) [杨婷, 季小玲, 李晓庆 2015 物理学报 64 204206]

    [28]

    Liu Y X, Chen Z Y, Pu J X 2017 Acta Phys. Sin. 66 124205 (in Chinese) [刘永欣, 陈子阳, 蒲继雄 2017 物理学报 66 124205]

    [29]

    Ma X L 2015 Acta Photon. Sin. 44 0601003 (in Chinese) [马雪莲 2015 光子学报 44 0601003]

    [30]

    Fried D L 1966 J. Opt. Soc. Am. 56 1372

    [31]

    Fried D L 1990 J. Opt. Soc. Am. A 7 1224

    [32]

    Baykal Y 2016 Appl. Opt. 55 1228

  • [1]

    Guo Y M, Rao C H, Bao H, Zhang A, Wei K 2014 Acta Phys. Sin. 63 149501 (in Chinese) [郭友明, 饶长辉, 鲍华, 张昂, 魏凯 2014 物理学报 63 149501]

    [2]

    Booth M J 2014 Light-Sci. Appl. 3 e165

    [3]

    Miller D T, Kocaoglu O P, Wang Q, Lee S 2011 Eye 25 321

    [4]

    Jiang W H 2006 Chin. J. Nature 28 7 (in Chinese) [姜文汉 2006 自然杂志 28 7]

    [5]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (2nd Ed.) (Bellingham, WA: SPIE Optical Engineering Press) pp606–623

    [6]

    Mahajan V N 2005 J. Opt. Soc. Am. A 22 1824

    [7]

    Chen T J, Zhou W C, Wang F, Huang D Q, Lu Y H, Zhang J Z 2015 Acta Phys. Sin. 64 134207 (in Chinese) [陈天江, 周文超, 王峰, 黄德权, 鲁燕华, 张建柱 2015 物理 学报 64 134207]

    [8]

    Zong F, Qiang X W, Wu M, Chang J Y, Feng S L 2014 Acta Opt. Sin. 34 16 (in Chinese) [宗飞, 强希文, 吴敏, 常金勇, 封双连 2014 光学学报 34 16]

    [9]

    Fusco T, Conan J M 2004 J. Opt. Soc. Am. A 21 1277

    [10]

    Greenwood D P 1977 J. Opt. Soc. Am. 67 390

    [11]

    Qu Q, Cao Z L, Hu L F, Zhang H S, Zhao J L, Xuan L 2015 Chin. Opt. 8 121 (in Chinese) [瞿青, 曹召良, 胡立 发, 张红胜, 赵晶丽, 宣丽 2015 中国光学 8 121]

    [12]

    Loos G C, Hogge C B 1979 Appl. Opt. 18 2654

    [13]

    Ding X K, Rong J, Bai H, Wang X, Shen J E, Li F 2008 Chin. Opt. Lett. 6 1

    [14]

    Yu L K, Xu J, Hong S, Hou Z H, Yi W 2014 Opt. Lett. 39 789

    [15]

    Yu L K, Hou Z H, Zhang S C, Xu J, Yi W 2015 Opt. Eng. 54 024105

    [16]

    Bogucki D J, Domaradzki J A, Ecke R E, Truman C R 2004 Appl. Opt. 43 5662

    [17]

    Hou W L, Woods S, Jarosz E, Goode W, Weidemann A 2012 Appl. Opt. 51 2678

    [18]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82

    [19]

    Lu L, Ji X L, Baykal Y 2014 Opt. Express 22 027112

    [20]

    Pu H, Ji X L 2016 J. Opt. 18 105704

    [21]

    Lu W, Liu L, Sun J 2006 J. Opt. A: Pure Appl. Opt. 8 1052

    [22]

    Hill R J 1978 J. Fluid Mech. Res. 88 541

    [23]

    Hill R J 1978 J. Opt. Soc. Amer. 68 1067

    [24]

    Korotkova O, Farwell N, Shchepakina E 2012 Wave Random Complex 22 260

    [25]

    Tang M M, Zhao D M 2013 Appl. Phys. B 111 665

    [26]

    Baykal Y 2016 Opt. Commun. 375 15

    [27]

    Yang T, Ji X L, Li X Q 2015 Acta Phys. Sin. 64 204206 (in Chinese) [杨婷, 季小玲, 李晓庆 2015 物理学报 64 204206]

    [28]

    Liu Y X, Chen Z Y, Pu J X 2017 Acta Phys. Sin. 66 124205 (in Chinese) [刘永欣, 陈子阳, 蒲继雄 2017 物理学报 66 124205]

    [29]

    Ma X L 2015 Acta Photon. Sin. 44 0601003 (in Chinese) [马雪莲 2015 光子学报 44 0601003]

    [30]

    Fried D L 1966 J. Opt. Soc. Am. 56 1372

    [31]

    Fried D L 1990 J. Opt. Soc. Am. A 7 1224

    [32]

    Baykal Y 2016 Appl. Opt. 55 1228

  • [1] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响. 物理学报, 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [2] 徐自强, 吴晓庆, 许满满, 毕翠翠, 韩永, 邵士勇. 海洋上空折射率结构常数廓线估算. 物理学报, 2021, 70(24): 244204. doi: 10.7498/aps.70.20211201
    [3] 贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周. Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究. 物理学报, 2019, 68(16): 164206. doi: 10.7498/aps.68.20190452
    [4] 罗曦, 李新阳, 胡诗杰, 黄奎, 王晓云. 人造钠信标角度非等晕性的实验研究. 物理学报, 2018, 67(9): 099501. doi: 10.7498/aps.67.20172686
    [5] 吴彤, 季小玲, 李晓庆, 王欢, 邓宇, 丁洲林. 海洋湍流中光波特征参量和短期光束扩展的研究. 物理学报, 2018, 67(22): 224206. doi: 10.7498/aps.67.20181033
    [6] 尹霄丽, 郭翊麟, 闫浩, 崔小舟, 常欢, 田清华, 吴国华, 张琦, 刘博, 忻向军. 汉克-贝塞尔光束在海洋湍流信道中的螺旋相位谱分析. 物理学报, 2018, 67(11): 114201. doi: 10.7498/aps.67.20180155
    [7] 张鹏飞, 乔春红, 冯晓星, 黄童, 李南, 范承玉, 王英俭. Non-Kolmogorov湍流大气中小尺度热晕效应线性理论. 物理学报, 2017, 66(24): 244210. doi: 10.7498/aps.66.244210
    [8] 刘永欣, 陈子阳, 蒲继雄. 随机电磁高阶Bessel-Gaussian光束在海洋湍流中的传输特性. 物理学报, 2017, 66(12): 124205. doi: 10.7498/aps.66.124205
    [9] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究. 物理学报, 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [10] 陈天江, 周文超, 王锋, 黄德权, 鲁燕华, 张建柱. 基于同步探测的脉冲钠导星聚焦非等晕性实验研究. 物理学报, 2015, 64(13): 134207. doi: 10.7498/aps.64.134207
    [11] 杨婷, 季小玲, 李晓庆. 部分相干环状偏心光束通过海洋湍流的传输特性. 物理学报, 2015, 64(20): 204206. doi: 10.7498/aps.64.204206
    [12] 陈薪羽, 董渊, 管佳音, 李述涛, 于永吉, 吕彦飞. 湍流介质折射率结构常数Cn2对双半高斯空心光束传输特性影响的研究. 物理学报, 2014, 63(16): 164208. doi: 10.7498/aps.63.164208
    [13] 包芸, 宁浩, 徐炜. 湍流热对流大尺度环流反转时的角涡特性. 物理学报, 2014, 63(15): 154703. doi: 10.7498/aps.63.154703
    [14] 陈冉, 刘阿娣, 邵林明, 胡广海, 金晓丽. 使用基于动态程序规划的时间延迟法分析直线磁化等离子体漂移波湍流角向传播速度和带状流结构. 物理学报, 2014, 63(18): 185201. doi: 10.7498/aps.63.185201
    [15] 何圣仲, 周国华, 许建平, 吴松荣, 陈利. 输出电容时间常数对V2控制Buck变换器的动力学特性的影响. 物理学报, 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [16] 王利国, 吴振森, 王明军. 湍流大气中星载角反射器阵列回波的闪烁指数. 物理学报, 2013, 62(16): 164210. doi: 10.7498/aps.62.164210
    [17] 姚天亮, 刘海峰, 许建良, 李伟锋. 空气湍射流速度时间序列的最大Lyapunov指数以及湍流脉动. 物理学报, 2012, 61(23): 234704. doi: 10.7498/aps.61.234704
    [18] 范馨燕, 刘京郊, 刘金生, 武敬力. 多阵元光纤相干列阵的理论与实验研究. 物理学报, 2010, 59(4): 2462-2470. doi: 10.7498/aps.59.2462
    [19] 杨旭东, 徐仲英, 罗向东, 方再历, 李国华, 苏荫强, 葛惟昆. ZnS中Te等电子中心的时间分辨光谱研究. 物理学报, 2005, 54(5): 2272-2276. doi: 10.7498/aps.54.2272
    [20] 陈炎发, 宋燠. π+介子辐射衰变分枝比. 物理学报, 1960, 16(5): 247-251. doi: 10.7498/aps.16.247
计量
  • 文章访问数:  3218
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-16
  • 修回日期:  2017-11-26
  • 刊出日期:  2018-03-05

海洋湍流中自适应光学成像系统特征参量研究

  • 1. 四川师范大学物理与电子工程学院, 成都 610068
  • 通信作者: 季小玲, jiXL100@163.com
    基金项目: 国家自然科学基金(批准号:61475105,61775152)资助的课题.

摘要: 随着水下光通信、传感和激光雷达等应用的发展,研究水下光学系统成像特性具有重要意义.本文研究了海洋湍流对自适应光学成像系统特征参量(如Strehl比、Greenwood时间常数和等晕角)的影响.推导出了海洋湍流中短曝光成像Strehl比的近似解析表达式,并证明:除了在近场DG/r0=1附近外(DG和r0分别为光学系统的光瞳直径和海洋湍流中可见参数),该近似公式均可保证足够的精度.此外,还得到了海洋湍流中Greenwood时间常数和等晕角的表达式.研究表明:随着海水盐度变化引起的海洋湍流逐渐占主导地位时,这三个特征参量值均减小;随着海水湍流动能耗散率的减小或海水湍流温度方差耗散率的增大,这三个特征参量值也均减小.本文研究结果对工作于水下湍流环境中自适应光学成像系统应用具有理论参考意义.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回