搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海洋上空折射率结构常数廓线估算

徐自强 吴晓庆 许满满 毕翠翠 韩永 邵士勇

引用本文:
Citation:

海洋上空折射率结构常数廓线估算

徐自强, 吴晓庆, 许满满, 毕翠翠, 韩永, 邵士勇

Estimation of ${\boldsymbol{C_n^2}}$ profile of troposphere over the sea

Xu Zi-Qiang, Wu Xiao-Qing, Xu Man-Man, Bi Cui-Cui, Han Yong, Shao Shi-Yong
PDF
HTML
导出引用
  • 湍流问题从提出到现在已困扰人们300多年. 虽然提出了一些可行的方案, 但在可预见的未来这一问题仍将困扰人们. 湍流主要由浮力热气泡和风切变产生, 在地球表面和大气之间传递物质和能量. 2019年6月开展了第二次海洋季风实验(sea monsoon experiment-II: SMEX-II), 实验过程中通过释放探空气球获得了海洋上空常规气象数据. 通过Tatarski参数化模式, 重点分析了海洋上空湍流拟合廓线的主要影响因素, 边界层、对流层顶湍流的演变规律, 以及离岸距离对湍流垂直廓线分布的影响. 结果表明, 外尺度对海洋上空湍流的分布起决定作用, 边界层顶和对流层顶的逆增长区取决于温度梯度的骤变, 陆地下垫面对边界层顶逆增长区的影响大而海洋下垫面对对流层顶的逆增长区影响大. 基于试验数据分析的海洋上空光学湍流时空分布特性, 为海洋的天文观测选址、激光大气传输和卫星遥感观测等提供了必要的参考.
    The problem of turbulence has been puzzling relevant researchers for more than 300 years. Although some feasible solutions and models have been proposed, the turbulence still brings trouble in the foreseeable future. Turbulence is caused mainly by buoyant thermal bubbles and wind shear, which transports matter and energy between the earth surface and the atmosphere. Based on the analysis of the measured data obtained from the Sea Monsoon Experiment-II (SMEX-II), carried out on the ‘Shenkuo’ scientific research ship, the vertical spatial distribution of meteorological data overseas was explored when the air sounding balloons were released at relatively fixed times during June 2019. Through the Tatarski model, the main influencing factors of fitting turbulence profile over the sea and the turbulence evolution of boundary layer top and tropopause are discussed. Meanwhile, the effect of offshore distance of the scientific research ship on the vertical profile of optical turbulence strength is analyzed. The results show that the outer scale plays a decisive role in the distribution of turbulence over the seas. The inverse growth section between the boundary layer top and the tropopause depends on the sudden change of temperature gradient. The underlying land surface has a significant influence on the inverse growth section to the boundary layer top, while the underlying sea surface has a more pronounced influence on the inverse growth section of the tropopause. Based on the obtained data and corresponding analysis, the spatiotemporal distribution characteristics of optical turbulence overseas are grasped, which provides necessary references for selecting the astronomical observation sites, atmospheric laser transmission, and satellite remote sensing observations over the sea.
      通信作者: 邵士勇, shaoshiyong@aiofm.ac.cn
    • 基金项目: 国家科技支撑计划(批准号: 2018YFC0213102)和国家自然科学基金(批准号: 41475024, 4202780010)资助的课题.
      Corresponding author: Shao Shi-Yong, shaoshiyong@aiofm.ac.cn
    • Funds: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2018YFC0213102) and the National Natural Science Foundation of China (Grant Nos. 41475024, 4202780010).
    [1]

    Liang J, Zhang L, Wang Y, Cao X, Zhang Q, Wang H, Zhang B 2014 J. Geophys. Res. Atmos. 119 6009Google Scholar

    [2]

    Pahlow M, Parlange M B, Porté-Agel F 2001 Boundary Layer Meteorol. 99 225Google Scholar

    [3]

    Hu X, Klein P M, Xue M 2013 J. Geophys. Res. Atmos. 118 10

    [4]

    王倩, 梅海平, 钱仙妹, 饶瑞中 2015 物理学报 64 114212Google Scholar

    Wang Q, Mei H P, Qian X M, Rao R Z 2015 Acta Phys. Sin. 64 114212Google Scholar

    [5]

    许满满, 邵士勇, 刘庆, 程雪玲, 宋小全 2020 光学学报 40 1201002Google Scholar

    Xu M M, Shao S Y, Liu Q, Cheng X Z, Song X Q 2020 Acta Optic. Sin. 40 1201002Google Scholar

    [6]

    Chowdhury S, Zhang J, Messac A, Castillo L 2012 Renewable Energy 38 16Google Scholar

    [7]

    王倩, 梅海平, 李玉剑, 邵士勇, 李学彬, 饶瑞中 2016 物理学报 65 074206Google Scholar

    Wang Q, Mei H P, Li Y J, Shao S Y, Li X B, Rao R Z 2016 Acta Phys. Sin. 65 074206Google Scholar

    [8]

    饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第155页

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p156 (in Chinese)

    [9]

    Fried D L, Mevers G E, Keister M P 1967 J. Opt. Soc. Am. 57 787Google Scholar

    [10]

    Cui L, Xue B, Zhou F 2014 J. Opt. Soc. Am. A 31 829

    [11]

    Huang Y, Zeng A, Gao Z, Zhang B 2015 Opt. Lett. 40 1619Google Scholar

    [12]

    Chiba T 1971 Appl. Opt. 10 2456Google Scholar

    [13]

    Avila R, Vernin J, Masciadri E 1997 Appl. Opt. 36 7898Google Scholar

    [14]

    Kornilov V, Safonov B, Kornilov M, Shatsky N, Voziakova O, Potanin S, Gorbunov I, Senik V, Cheryasov D 2014 Publ. Astron. Soc. Pac. 126 482Google Scholar

    [15]

    Bufton J, Minott P, Fitzmaurice M, Titterton P 1972 J. Opt. Soc. Am. 62 1068Google Scholar

    [16]

    Trinqueta H, Agabia A, Vernina J, Azouita M, Aristidia E, Fossat E 2008 Proc. SPIE 7012 701225

    [17]

    Mchugh J, Sharman R 2013 J. R. Meteorolog. Soc. 139 1632Google Scholar

    [18]

    张彩云, 翁宁泉, 高慧, 姚远成, 孙刚, 刘庆 2013 光学学报 33 0301004

    Zhang C Y, Weng L Q, Gao H, Yao Y C, Sun G, Liu Q 2013 Acta Optic. Sin. 33 0301004

    [19]

    Abahamid A, Jabiri A, Vernin J, Benkhaldoun Z, Azouit M, Agabi A 2004 Astron. Astrophys. 416 1193Google Scholar

    [20]

    Shao S Y, Qin F Q, Xu M M, Liu Q, Han Y, Xu Z Q 2020 Results in Engineering 9 100191Google Scholar

    [21]

    王倩, 梅海平, 钱仙妹, 饶瑞中 2015 物理学报 64 224216Google Scholar

    Wang Q, Mei H P, Qian X M, Rao R Z 2015 Acta Phys. Sin. 64 224216Google Scholar

    [22]

    Qing C, Wu X Q, Huang H H, Tian Q, Zhu W Y, Rao R Z, Li X B 2016 Opt. Express 24 20424Google Scholar

    [23]

    张鹏飞, 乔春红, 冯晓星, 黄童, 李南, 范承玉, 王英俭 2017 物理学报 66 244210Google Scholar

    Zhang P F, Qiao C H, Feng X X, Huang T, Li N, Fan C Y, Wang Y J 2017 Acta Phys. Sin. 66 244210Google Scholar

    [24]

    吴晓庆, 钱仙妹, 黄宏华, 汪平, 崔朝龙, 青春 2014 天文学报 55 114Google Scholar

    Wu X Q, Qian X M, Huang H H, Wang P, Cui C L, Qing C 2014 Acta Astron. Sin. 55 114Google Scholar

    [25]

    Ruggiero F H, Debenedictis D A 2002 DOD High Performance Computer Users Group Conference Austin, Texas, January 13–14, 2002 p11

    [26]

    蔡俊, 李学彬, 詹国伟, 武鹏飞, 徐春燕, 青春, 吴晓庆 2018 物理学报 67 014206Google Scholar

    Cai J, Li X B, Zhan G W, Wu P F, Xu C Y, Qin C, Wu X Q 2018 Acta Phys. Sin. 67 014206Google Scholar

    [27]

    罗兰B 著 (扬长新 译) 1991 边界层气象学导论 (北京: 气象出版社) 第13—20页

    Roland B (translated by Yang C X) 1991 An Introduction to Boundary Layer Meteorology (Beijing: Meteorological Press) pp13–20 (in Chinese)

    [28]

    Peng S Q, Zhu Y H, Huang H, Ding X R, Shi R, Wu D M, Feng Y R, Wang D X 2016 Atmos. Sci. Lett. 17 564Google Scholar

  • 图 1  “沈括号”科考船航线图

    Fig. 1.  Vessel trajectory of ‘Shenkuo’.

    图 2  释放探空气球获取气象参数

    Fig. 2.  Radiosonde for vertical meteorological parameter profiles.

    图 3  2019年6月16日昼夜探空气象数据和拟合折射率结构常数廓线 (a) 风速; (b) 风向; (c) 温度; (d) 温度梯度; (e) 风切变; (f) 外尺度; (g) 位势折射率梯度; (h) 拟合折射率结构常数

    Fig. 3.  Noon and night meteorological data in June 16, 2019 and fitted refractive index structure constant profile: (a) Wind velocity; (b) wind direction; (c) temperature; (d) temperature gradient; (e) wind shear gradient; (f) the outer scale; (g) potential refractive index gradient; (h) fitted $C_n^2$.

    图 4  (a) 全程$C_n^2$昼夜平均拟合廓线; (b) 近海$C_n^2$昼夜平均拟合廓线; (c) 远海$C_n^2$昼夜平均拟合廓线

    Fig. 4.  (a) Day and night average $C_n^2$ fitted profile of entire journey; (b) day and night average $C_n^2$ fitted profile of offshore; (c) day and night average $C_n^2$ fitted profile of deep ocean.

    图 5  沿海$C_n^2$昼夜平均拟合廓线

    Fig. 5.  Day and night average $C_n^2$ fitted profile of sea and coastal area.

    图 6  (a) 微波辐射计湿度廓线; (b) 白天探空气球湿度廓线; (c) 白天探空气$C_n^2$拟合廓线; (d) 白天探空气球温度梯度廓线; (e) 微波辐射计温度梯度廓线

    Fig. 6.  (a) Humidity profile of microwave radiometer; (b) noon humidity profile of radiosonde; (c) noon $C_n^2$ fitted profile of radiosonde; (d) noon temperature gradient profile of radiosonde; (e) temperature gradient profile of microwave radiometer.

    图 7  海洋远海$C_n^2$实测廓线和拟合廓线

    Fig. 7.  Measured profile and fitted profile of $C_n^2$ in the sea.

    图 8  白天夜晚风切变的$C_n^2$拟合廓线、温度梯度的$C_n^2$拟合廓线、完整$C_n^2$拟合廓线的对比图

    Fig. 8.  Noon and night comparison of $C_n^2$ fitted profile of wind shear, $C_n^2$ fitted profile of temperature gradient, and $C_n^2$ fitted profile of wind shear and temperature gradient.

    图 9  随距离变化的$C_n^2$拟合廓线

    Fig. 9.  $C_n^2$ fitted profile varying with distance.

    表 1  海洋探空记录

    Table 1.  Record of balloon soundings over sea.

    气球
    编号
    放球时间放球地点离岸距
    离/km
    1#6.9 00:1622º36.937' N 114º36.070' E2
    2#6.9 13:1022º27.274' N 115º32.432' E25
    3#6.9 23:5122º11.285' N 116º33.254' E84
    4#6.10 12:2121º59.770' N 117º23.151' E143
    5#6.12 00:0022º00.268' N 118º15.526' E193
    6#6.12 11:5721º52.084' N 118º10.958' E201
    7#6.13 11:5521º08.895' N 118º18.099' E271
    8#6.14 00:0821º00.147' N 118º02.701' E269
    9#6.14 11:5520º59.029' N 117º42.500' E249
    10#6.15 11:5321º14.780' N 117º15.068' E204
    11#6.16 11:5521º27.236' N 117º23.100' E189
    12#6.17 11:5222º18.545' N 117º40.370' E135
    13#6.17 23:5421º41.589' N 116º23.622' E129
    14#6.18 12:0121º53.905' N 115º08.470' E89
    下载: 导出CSV
  • [1]

    Liang J, Zhang L, Wang Y, Cao X, Zhang Q, Wang H, Zhang B 2014 J. Geophys. Res. Atmos. 119 6009Google Scholar

    [2]

    Pahlow M, Parlange M B, Porté-Agel F 2001 Boundary Layer Meteorol. 99 225Google Scholar

    [3]

    Hu X, Klein P M, Xue M 2013 J. Geophys. Res. Atmos. 118 10

    [4]

    王倩, 梅海平, 钱仙妹, 饶瑞中 2015 物理学报 64 114212Google Scholar

    Wang Q, Mei H P, Qian X M, Rao R Z 2015 Acta Phys. Sin. 64 114212Google Scholar

    [5]

    许满满, 邵士勇, 刘庆, 程雪玲, 宋小全 2020 光学学报 40 1201002Google Scholar

    Xu M M, Shao S Y, Liu Q, Cheng X Z, Song X Q 2020 Acta Optic. Sin. 40 1201002Google Scholar

    [6]

    Chowdhury S, Zhang J, Messac A, Castillo L 2012 Renewable Energy 38 16Google Scholar

    [7]

    王倩, 梅海平, 李玉剑, 邵士勇, 李学彬, 饶瑞中 2016 物理学报 65 074206Google Scholar

    Wang Q, Mei H P, Li Y J, Shao S Y, Li X B, Rao R Z 2016 Acta Phys. Sin. 65 074206Google Scholar

    [8]

    饶瑞中 2012 现代大气光学 (北京: 科学出版社) 第155页

    Rao R Z 2012 Modern Atmospheric Optics (Beijing: Science Press) p156 (in Chinese)

    [9]

    Fried D L, Mevers G E, Keister M P 1967 J. Opt. Soc. Am. 57 787Google Scholar

    [10]

    Cui L, Xue B, Zhou F 2014 J. Opt. Soc. Am. A 31 829

    [11]

    Huang Y, Zeng A, Gao Z, Zhang B 2015 Opt. Lett. 40 1619Google Scholar

    [12]

    Chiba T 1971 Appl. Opt. 10 2456Google Scholar

    [13]

    Avila R, Vernin J, Masciadri E 1997 Appl. Opt. 36 7898Google Scholar

    [14]

    Kornilov V, Safonov B, Kornilov M, Shatsky N, Voziakova O, Potanin S, Gorbunov I, Senik V, Cheryasov D 2014 Publ. Astron. Soc. Pac. 126 482Google Scholar

    [15]

    Bufton J, Minott P, Fitzmaurice M, Titterton P 1972 J. Opt. Soc. Am. 62 1068Google Scholar

    [16]

    Trinqueta H, Agabia A, Vernina J, Azouita M, Aristidia E, Fossat E 2008 Proc. SPIE 7012 701225

    [17]

    Mchugh J, Sharman R 2013 J. R. Meteorolog. Soc. 139 1632Google Scholar

    [18]

    张彩云, 翁宁泉, 高慧, 姚远成, 孙刚, 刘庆 2013 光学学报 33 0301004

    Zhang C Y, Weng L Q, Gao H, Yao Y C, Sun G, Liu Q 2013 Acta Optic. Sin. 33 0301004

    [19]

    Abahamid A, Jabiri A, Vernin J, Benkhaldoun Z, Azouit M, Agabi A 2004 Astron. Astrophys. 416 1193Google Scholar

    [20]

    Shao S Y, Qin F Q, Xu M M, Liu Q, Han Y, Xu Z Q 2020 Results in Engineering 9 100191Google Scholar

    [21]

    王倩, 梅海平, 钱仙妹, 饶瑞中 2015 物理学报 64 224216Google Scholar

    Wang Q, Mei H P, Qian X M, Rao R Z 2015 Acta Phys. Sin. 64 224216Google Scholar

    [22]

    Qing C, Wu X Q, Huang H H, Tian Q, Zhu W Y, Rao R Z, Li X B 2016 Opt. Express 24 20424Google Scholar

    [23]

    张鹏飞, 乔春红, 冯晓星, 黄童, 李南, 范承玉, 王英俭 2017 物理学报 66 244210Google Scholar

    Zhang P F, Qiao C H, Feng X X, Huang T, Li N, Fan C Y, Wang Y J 2017 Acta Phys. Sin. 66 244210Google Scholar

    [24]

    吴晓庆, 钱仙妹, 黄宏华, 汪平, 崔朝龙, 青春 2014 天文学报 55 114Google Scholar

    Wu X Q, Qian X M, Huang H H, Wang P, Cui C L, Qing C 2014 Acta Astron. Sin. 55 114Google Scholar

    [25]

    Ruggiero F H, Debenedictis D A 2002 DOD High Performance Computer Users Group Conference Austin, Texas, January 13–14, 2002 p11

    [26]

    蔡俊, 李学彬, 詹国伟, 武鹏飞, 徐春燕, 青春, 吴晓庆 2018 物理学报 67 014206Google Scholar

    Cai J, Li X B, Zhan G W, Wu P F, Xu C Y, Qin C, Wu X Q 2018 Acta Phys. Sin. 67 014206Google Scholar

    [27]

    罗兰B 著 (扬长新 译) 1991 边界层气象学导论 (北京: 气象出版社) 第13—20页

    Roland B (translated by Yang C X) 1991 An Introduction to Boundary Layer Meteorology (Beijing: Meteorological Press) pp13–20 (in Chinese)

    [28]

    Peng S Q, Zhu Y H, Huang H, Ding X R, Shi R, Wu D M, Feng Y R, Wang D X 2016 Atmos. Sci. Lett. 17 564Google Scholar

  • [1] 祝凤荣, 柳靖, 夏君集, 张丰, 刘虎. 基于MSISE-90研究高海拔宇宙线观测站处的大气深度廓线模型. 物理学报, 2024, 73(16): 169201. doi: 10.7498/aps.73.20240679
    [2] 胡运优, 徐亮, 沈先春, 束胜全, 徐睆垚, 邓亚颂, 徐寒扬, 刘建国, 刘文清. 基于大气廓线合成背景的目标气云透过率反演. 物理学报, 2023, 72(3): 033201. doi: 10.7498/aps.72.20221670
    [3] 王明军, 席建霞, 王婉柔, 李勇俊, 张佳琳. 声波扰动对大气湍流内外尺度与折射率功率谱函数的影响分析. 物理学报, 2023, 72(12): 124303. doi: 10.7498/aps.72.20230003
    [4] 吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭. 大气光学湍流模式研究—方法和进展. 物理学报, 2023, 72(4): 049201. doi: 10.7498/aps.72.20221986
    [5] 吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭. 大气光学湍流模式研究: ${\boldsymbol{C}}_{\boldsymbol{n}}^{\boldsymbol 2}$廓线模式. 物理学报, 2023, 72(6): 069201. doi: 10.7498/aps.72.20221985
    [6] 张坤, 罗涛, 王菲菲, 孙刚, 刘庆, 青春, 李学彬, 翁宁泉, 朱文越. 基于探空数据分析低云对大气折射率结构常数的影响. 物理学报, 2022, 71(8): 089202. doi: 10.7498/aps.71.20211792
    [7] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图. 基于激光外差探测的大气N2O吸收光谱测量与廓线反演. 物理学报, 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [8] 蔡俊, 李学彬, 詹国伟, 武鹏飞, 徐春燕, 青春, 吴晓庆. 一个新的海边光学湍流外尺度和Cn2的廓线模式. 物理学报, 2018, 67(1): 014206. doi: 10.7498/aps.67.20171324
    [9] 王倩, 梅海平, 李玉剑, 邵士勇, 李学彬, 饶瑞中. 远海海面大气光学湍流实验测量. 物理学报, 2016, 65(7): 074206. doi: 10.7498/aps.65.074206
    [10] 王倩, 梅海平, 钱仙妹, 饶瑞中. 近地面大气光学湍流外尺度的实验研究. 物理学报, 2015, 64(22): 224216. doi: 10.7498/aps.64.224216
    [11] 王倩, 梅海平, 钱仙妹, 饶瑞中. 近地面大气光学湍流空间相关特性的实验研究. 物理学报, 2015, 64(11): 114212. doi: 10.7498/aps.64.114212
    [12] 王婷婷, 葛益娴, 常建华, 柯炜, 王鸣. 基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究. 物理学报, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [13] 陈薪羽, 董渊, 管佳音, 李述涛, 于永吉, 吕彦飞. 湍流介质折射率结构常数Cn2对双半高斯空心光束传输特性影响的研究. 物理学报, 2014, 63(16): 164208. doi: 10.7498/aps.63.164208
    [14] 张兰强, 顾乃庭, 饶长辉. 大气湍流三维波前探测模式层析算法分析. 物理学报, 2013, 62(16): 169501. doi: 10.7498/aps.62.169501
    [15] 毕研盟, 廖蜜, 张鹏, 马刚. 应用一维变分法反演GPS掩星大气温湿廓线. 物理学报, 2013, 62(15): 159301. doi: 10.7498/aps.62.159301
    [16] 程胡华, 钟中, 岑瑾, 邓少格. 估算大气重力波参数的垂直扰动廓线获取新方法. 物理学报, 2012, 61(18): 189201. doi: 10.7498/aps.61.189201
    [17] 何明元, 杜华栋, 龙智勇, 黄思训. 大气廓线参数反演中基于大气可反演指数的正则化参数选择方法. 物理学报, 2012, 61(2): 024205. doi: 10.7498/aps.61.024205
    [18] 李杰, 杨方清, 董建峰. 双层金属线平面手征结构的强旋光性和负折射率研究. 物理学报, 2011, 60(12): 124202. doi: 10.7498/aps.60.124202
    [19] 赵小峰, 黄思训. 垂直天线阵观测信息反演大气折射率廓线. 物理学报, 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [20] 冯洪安, 余玉贞, 黄炳忠. 椭偏光谱对复数折射率薄膜的研究——ITO膜光学常数的色散和生长规律. 物理学报, 1986, 35(3): 319-328. doi: 10.7498/aps.35.319
计量
  • 文章访问数:  5004
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-08-20
  • 上网日期:  2021-08-25
  • 刊出日期:  2021-12-20

/

返回文章
返回