搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MSISE-90研究LHAASO处的大气深度廓线模型

祝凤荣 柳靖 夏君集 张丰 刘虎

引用本文:
Citation:

基于MSISE-90研究LHAASO处的大气深度廓线模型

祝凤荣, 柳靖, 夏君集, 张丰, 刘虎

Study of Atmospheric Depth Profiles at LHAASO Using the MSISE-90 Model

Zhu Feng-rong, Liu Jing, Xia Jun-ji, Zhang Feng, Liu Hu
PDF
导出引用
  • 高海拔宇宙线观测站(LHAASO)位于四川省稻城县海子山,它的广角切伦科夫望远镜阵(WFCTA)主要是通过观测广延大气簇射过程中产生的切伦科夫光信号对宇宙线进行研究。WFCTA的标定、模拟和重建都和大气深度有关,目前使用的大气深度模型是美国标准大气深度廓线模型。本研究中将美国标准大气深度廓线模型与卫星TIMED搭载的红外辐射计SABER记录到的LHAASO处14 km至50 km处的大气深度廓线进行比较,同时也与LHAASO处地面气象站记录的大气深度进行比较,美国标准大气模型的大气深度均偏小。MSISE-90大气模型描述了地球大气中从地面到热层的中性温度和密度,进一步研究比较发现MSISE-90大气模型与TIMED/SABER和LHAASO处地面标准气象站记录的大气深度的一致性较好。根据MSISE-90大气模型计算得到LHAASO处的大气深度均值廓线在1月最低,其次是2月、3月、4月、11月和12月,这也是WFCTA运行的最佳观测月份。4月份的大气边界层最高,其大气深度存在约2%的日变化。利用美国标准大气模型的函数形式,拟合每月的4.4-100 km处的大气深度廓线,得到了LHAASO处的每月的大气深度廓线模型,并比较了30°天顶角入射的100 TeV的宇宙线质子在MSISE-90大气模型和美国标准大气模型中产生的切伦科夫光的横分布的差异,二者最大差异可以达到~20%。
    High Altitude Cosmic Ray Observatory (LHAASO) is located at Haizi Mountain in Daocheng County, Sichuan Province. Its Wide Field of view Cherenkov Telescope Array (WFCTA) primarily studies cosmic rays by observing the Cherenkov light signals produced during extensive air showers. Calibration, simulation, and reconstruction of WFCTA are all related to atmospheric depth. The currently used atmospheric depth model is the US Standard Atmosphere Depth Profile Model. In this study, the US Standard Atmosphere Depth Profile Model is compared with the atmospheric depth profile recorded by the infrared radiometer SABER carried by the satellite TIMED at LHAASO from 14 km to 50 km, as well as with the atmospheric depth recorded by the ground meteorological station at LHAASO. The atmospheric depth obtained from the US Standard Atmosphere Model is consistently smaller. The MSISE-90 atmospheric model describes the neutral temperature and density from the Earth’s surface to the thermosphere. Further research shows good consistency between the MSISE-90 atmospheric model and the atmospheric depth recorded by TIMED/SABER and the ground standard meteorological station at LHAASO. According to the MSISE-90 atmospheric model, the mean atmospheric depth profile at LHAASO is lowest in January, followed by February, March, April, November, and December, which are also the optimal observation months for WFCTA operation. The atmospheric boundary layer is highest in April, and there is about 2% diurnal variation in atmospheric depth. Using the functional form of the US Standard Atmosphere Model, the atmospheric depth profiles from 4.4 to 100 kilometers were fitted for each month, obtaining monthly atmospheric depth profile models at the LHAASO site. And compared the lateral distribution of the Cherenkov photons produced by 100 TeV cosmic-ray protons incident at a zenith angle of 30° in the MSISE-90 atmospheric model and the US Standard Atmosphere Model,with the maximum difference reaching approximately 20%.
  • [1]

    He H H 2018 Radiation Detection Technology and Methods 2 1

    [2]

    Cao Z, Chen M J, Chen S Z, Hu H B, Liu C, Liu Y, Ma L L, Ma X H, Sheng X D, Wu H R, Xiao G, Yao Z G, Yin L Q, Zha M, Zhang S S 2019 ACTA Astronomica sinica 60 3(in Chinses)[曹臻,陈明君,陈松战,胡红波,刘成,刘烨,马玲玲,马欣华,盛祥东,吴含荣,肖刚,姚志国,尹丽巧,查敏,张寿山 2019 天文学报 60]

    [3]

    LHAASO Collaboration 2021 Science 373 425

    [4]

    LHAASO Collaboration 2021 Nature 594 33

    [5]

    LHAASO Collaboration 2022 Nuclear Instruments and Methods in Physics Research A 1021 165824

    [6]

    LHAASO Collaboration 2021 The European Physical Journal C 81 657

    [7]

    Xie N, Liu H, Hu Y, Long W J, Jia H Y, Zhu F R, Chen Q H 2019 In 36th International Cosmic Ray Conference (ICRC2019), 498 (Madison, U.S.A.)

    [8]

    Sun Q N 2021 In 37th International Cosmic Ray Conference (ICRC2021), 272 (Berlin, Germany)

    [9]

    Chen L, Li X, Ge L S, Liu H, Sun Q N, Wang Y, Xia J J, Zhu F R, Zhang Y 2021 In 37th International Cosmic Ray Conference (ICRC2021), 269 (Berlin, Germany)

    [10]

    Li X, Chen L, Geng L S, Liu H, Sun Q N, Wang Y, Xia J J, Zhu F R, Zhang Y 2022 Astronomical Research & Technology 19 244(in Chinses)[李新,陈龙,耿利斯,刘虎,孙秦宁,王阳,夏君集,祝凤荣,张勇 2022 天文研究与技术 19]

    [11]

    Sun Q N, Jin M, Xia J J, Liu J, Min Z, Zhu F R, Chen L, Wang Y, Liu Y, Zhang Y 2023 In 38th International Cosmic Ray Conference (ICRC2023), 498 (Nagoya, Japan)

    [12]

    Sun Q N, Wang Y, Chen L, Zhang Y, Zhu F R 2023 In 38th International Cosmic Ray Conference (ICRC2023), 496 (Nagoya, Japan)

    [13]

    Sun Q N, Min Z, Liu H, Zhu F R, Zhang S S, Long C, Wang Y 2023 In 38th International Cosmic Ray Conference (ICRC2023), 494 (Nagoya, Japan)

    [14]

    Liu J, Tang X F, Xia J J, Zhu F R 2024 Plateau and mountain meteorology research. (in Chinses)[柳靖,唐晓凡,夏君集,祝凤荣 2024 高原山地气象研究] 待发表

    [15]

    Heck J, Knapp J, Capdevielle G, Schatz G, Thouw T 1998 Report fzka 6019. Tech. Rep. 6019, Forschungszentrum

    [16]

    Linsley J 1988

    [17]

    Wilczyńska B, Góra D, Homola P, Pe, kala J, Risse M, Wilczyński H 2006 Astroparticle Physics 25 106

    [18]

    Keilhauer B, Will M, Pierre Auger Collaboration 2012 The European Physical Journal Plus 127 96

    [19]

    Pierre Auger Collaboration 2012 Astroparticle Physics 35 591

    [20]

    HiRes Collaboration 2001 In Proceedings of the 27th International Cosmic Ray Conference (Hamburg, Germany), 653

    [21]

    HESS Collaboration 2003 In Proceedings of the 28th International Cosmic Ray Conference (Tsukuba, Japan), 2879

    [22]

    VERITAS Collaboration 2009 In AIP Conf. Proc. 735

    [23]

    Telescope Array Collaboration 2001 In 27th International Cosmic Ray Conference(ICRC2001) (Hamburg, Germany), 663

    [24]

    Schmuckermaier F, Gaug M, Fruck C, Moralejo A, Hahn A, Dominis Prester D, Dorner D, Font L, Mićanović S, Mirzoyan R, Paneque D, Pavletić L, Sitarek J, Will M 2023 Astronomy and Astrophysics 673 25

    [25]

    Hedin A ff, Res J G ff 1991 Journal of Geophysical Research 96 1159

    [26]

    NASA CCMC MSIS Vitmo Model, Accessed on: 2024-03-27

    [27]

    Cheng X, Xiao C Y, Hu X, Yang J F 2018 SCIENTIA SINICA Physica, Mechanica & Astronomica 48 79(in Chinses)[程旋,肖存英,胡雄,杨钧烽 2018 中国科学: 物理学力学天文学 48]

    [28]

    Gong X Y, Hu X, Wu X C, Xiao C Y 2013 Chinses Journal of Geophysics 56 2152(in Chinses)[宫晓艳,胡雄,吴小成,肖存英 2013 地球物理学报 56]

    [29]

    Dai Y R, Pan W L, Qiao S, Hu X, Yan Z A, Ban C 2020 Chinese Journal of Space Science 40 207

    [30]

    Hedin A E, Salah J E, Evans J V, Reber C A, Newton N W G Pand Spencer, Kayser D C, Alcayde D, Bauer P, Cogger L, McClure J P 1977 Journal of Geophysical Research 82 2139

    [31]

    Hedin A E 1987 Journal of Geophysical Research 92 4649

    [32]

    Picone J M, Hedin A E, Drob D P, Aikin A C 2002 Journal of Geophysical Research 107 1468

    [33]

    Labitzke K, Barnett J J, Edwards B, editors 1985 Handbook MAP 16 (SCOSTEP, University of Illinois, Urbana)

    [34]

    Fleming E L, Chandra S, Barnett J, Corney M 1990 Advances in Space Research 10 11

    [35]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 Corsika: A monte carlo code to simulate extensive air showers. Tech. rep. 51.02.03; LK 01; Wissenschaftliche Berichte, FZKA-6019 (Februar 98)

    [36]

    Zhang F, Liu H, Zhu F R 2022 Acta Physica Sinica 71 472(in Chinses)[张丰,刘虎,祝凤荣 2022 物理学报 71]

    [37]

    Liu J R, Wu H X, Liu Q, Ji Y J, Xu R, Zhang F, Liu H 2024 Universe 10 100

    [38]

    NASA, USAF, editors 1976 U.S. Standard Atmosphere 1976 (Washington D.C.: U.S. Government Printing Offce)

  • [1] 阿西克古, 周勋秀, 张云峰. 雷暴电场对LHAASO观测面宇宙线次级光子的影响. 物理学报, doi: 10.7498/aps.73.20240341
    [2] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [3] 吴晓庆, 杨期科, 黄宏华, 青春, 胡晓丹, 王英俭. 大气光学湍流模式研究: ${\boldsymbol{C}}_{\boldsymbol{n}}^{\boldsymbol 2}$廓线模式. 物理学报, doi: 10.7498/aps.72.20221985
    [4] 胡运优, 徐亮, 沈先春, 束胜全, 徐睆垚, 邓亚颂, 徐寒扬, 刘建国, 刘文清. 基于大气廓线合成背景的目标气云透过率反演. 物理学报, doi: 10.7498/aps.72.20221670
    [5] 张丰, 刘虎, 祝凤荣. 膝区宇宙线广延大气簇射次级成分的特征. 物理学报, doi: 10.7498/aps.71.20221556
    [6] 徐自强, 吴晓庆, 许满满, 毕翠翠, 韩永, 邵士勇. 海洋上空折射率结构常数廓线估算. 物理学报, doi: 10.7498/aps.70.20211201
    [7] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图. 基于激光外差探测的大气N2O吸收光谱测量与廓线反演. 物理学报, doi: 10.7498/aps.70.20210710
    [8] 黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉. 高海拔宇宙线观测实验中scaler模式的模拟研究. 物理学报, doi: 10.7498/aps.70.20210632
    [9] 毕研盟, 廖蜜, 张鹏, 马刚. 应用一维变分法反演GPS掩星大气温湿廓线. 物理学报, doi: 10.7498/aps.62.159301
    [10] 吕绮雯, 郑阳恒, 田彩星, 刘福虎, 蔡啸, 方建, 高龙, 葛永帅, 刘颖彪, 孙丽君, 孙希磊, 牛顺利, 王志刚, 谢宇广, 薛镇, 俞伯祥, 章爱武, 胡涛, 吕军光. 利用ICCD定位宇宙线来测量探测器时间分辨的方法研究. 物理学报, doi: 10.7498/aps.61.072904
    [11] 程胡华, 钟中, 岑瑾, 邓少格. 估算大气重力波参数的垂直扰动廓线获取新方法. 物理学报, doi: 10.7498/aps.61.189201
    [12] 何明元, 杜华栋, 龙智勇, 黄思训. 大气廓线参数反演中基于大气可反演指数的正则化参数选择方法. 物理学报, doi: 10.7498/aps.61.024205
    [13] 赵小峰, 黄思训. 垂直天线阵观测信息反演大气折射率廓线. 物理学报, doi: 10.7498/aps.60.119203
    [14] 乐贵明, 韩延本. 用银河宇宙线数据分析1991年3月24日CME的结构. 物理学报, doi: 10.7498/aps.54.467
    [15] 周 斌, 郝 楠, 陈立民. 夫琅禾费线对差分光学吸收光谱法测量大气污染气体影响的研究. 物理学报, doi: 10.7498/aps.54.4445
    [16] 张毅波. 切伦科夫自由电子激光中自发辐射与受激辐射的关系. 物理学报, doi: 10.7498/aps.36.1344
    [17] 孙洛瑞. 平均能量为2×1015eV的宇宙线入射方向研究. 物理学报, doi: 10.7498/aps.34.196
    [18] 王世伟, 况浩怀, 袁余奎. 宇宙线高能粒子与液体闪烁体的核相互作用. 物理学报, doi: 10.7498/aps.19.205
    [19] 张文裕. 由宇宙线(1011—1014电子伏)引起的高能核作用. 物理学报, doi: 10.7498/aps.17.9
    [20] 郑吉母, 蒋孟闵. 落雪山宇宙线强度的气压系数. 物理学报, doi: 10.7498/aps.16.175
计量
  • 文章访问数:  50
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2024-07-13

/

返回文章
返回