搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高海拔宇宙线观测实验中scaler模式的模拟研究

黄志成 周勋秀 黄代绘 贾焕玉 陈松战 马欣华 刘栋 阿西克古 赵兵 陈林 王培汉

引用本文:
Citation:

高海拔宇宙线观测实验中scaler模式的模拟研究

黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉

Simulation study of scaler mode at large high altitude air shower observatory

Huang Zhi-Cheng, Zhou Xun-Xiu, Huang Dai-Hui, Jia Huan-Yu, Chen Song-Zhan, Ma Xin-Hua, Liu Dong, AXi Ke-Gu, Zhao Bing, Chen Lin, Wang Pei-Han
PDF
HTML
导出引用
  • 位于四川省稻城县海子山的高海拔宇宙线观测站(LHAASO)包含3个子阵列, 即地面粒子探测器阵列(KM2A)、水切伦科夫探测器阵列 (WCDA) 和广角大气切伦科夫望远镜阵列(WFCTA). 作为LHAASO实验的主阵列, KM2A由5195个地面电磁粒子探测器(ED)和1188个地下缪子探测器(MD)组成. 对地面宇宙线观测实验来说, 常有两种独立的数据采集模式, 即shower模式和scaler模式. 本文通过Monte Carlo方法, 利用CORSIKA软件包和G4KM2A软件包, 对KM2A-ED阵列中的scaler模式进行了模拟研究. 当64个ED作为一个cluster、符合时间窗口为100 ns时, 多重数m ≥ 1, 2, 3和4的计数率分别约为 88 kHz, 1400 Hz, 220 Hz和 110 Hz. 对scaler模式探测原初宇宙线的能量和有效面积也进行了模拟计算, 发现KM2A-ED中多重数m ≥ 1 时探测原初质子的阈能可降低到100 GeV、有效面积高达100 m2. 本模拟结果为LHAASO-KM2A实验中进行scaler模式的数据触发提供了具体方案, 为后续的实验数据分析提供了信息.
    A large high altitude air shower observatory (LHAASO) located at Daocheng in Sichuan province, China, with an altitude up to 4410 m above the sea level, takes the function of hybrid technology to detect cosmic rays. It is composed of three sub-arrays: a 1.3 km2 ground-based particle detector array (KM2A) for γ-ray astronomy and cosmic ray physics, a 78000 m2 water Cherenkov detector array (WCDA) for γ-ray astronomy, and 18 wide field-of-view air Cherenkov/fluorescence telescopes array (WFCTA) for cosmic ray physics. As the major array of LHAASO, KM2A is composed of 5195 electromagnetic particle detectors (EDs, each with 1 m2) and 1188 muon detectors (MDs, each with 36 m2). In the ground-based experiments, there are two common independent data acquisition systems, corresponding to the shower and scaler operation modes. Up to now, the KM2A array operates only in shower mode with the primary energy threshold of about 10 TeV. In the scaler mode, it is not necessary for too many detectors to be hit at the same time. The energy threshold of the experiment can be greatly lowered. In order to learn more about the scaler mode in LHAASO-KM2A, we adopt the CORSIKA 7.5700 to study the cascade processes of extensive air showers in the atmosphere, and employ the G4KM2A (based on Geant4) to simulate the detector responses. The KM2A-ED array is divided into dozens of clusters. For one cluster (composed of 64 EDs), the event rates of showers having a number of fired EDs ≥ 1, 2, 3, 4 (in a time coincidence of 100 ns) are recorded. The average rates of the four multiplicities are ~88 kHz, ~1400 Hz, ~220 Hz, and ~110 Hz, respectively. The particle multiplicities m ≥ 3 are almost completely due to cosmic ray secondary particles. The corresponding primary energies and effective areas are also given in this paper. According to our simulations, the energy threshold of the scaler mode can be lowered to 100 GeV, and the effective areas reach up to ~100 m2. The simulation results in this work are helpful in the online triggering with the scaler mode, and provide information for the subsequent data analysis in LHAASO-KM2A.
      通信作者: 周勋秀, zhouxx@swjtu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0404201)、国家自然科学基金(批准号: U2031101, 11475141, 12047576, U1931108)和西藏大学宇宙线教育部重点实验室(批准号: KLCR-202101)资助的课题
      Corresponding author: Zhou Xun-Xiu, zhouxx@swjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0404201), the National Natural Science Foundation of China (Grant Nos. U2031101, 11475141, 12047576, U1931108), and the Key Laboratory of Cosmic Ray of Tibet University Ministry of Education, China(Grant No. KLCR-202101)
    [1]

    张潇, 陈阳 2019 现代物理知识 31 9

    Zhang X, Chen Y 2019 Modern Physics 31 9

    [2]

    周勋秀, 胡红波, 黄庆 2009 物理学报 58 5879Google Scholar

    Zhou X X, Hu H B, Huang Q 2009 Acta Phys. Sin. 58 5879Google Scholar

    [3]

    Bartoli B, Bernardini P, Bi X J 2017 Astrophys. J. 842 31Google Scholar

    [4]

    Abeysekara A U, Alfaro R, Alvarez C 2015 Astrophys. J. 800 78Google Scholar

    [5]

    Aharonian F, An Q, Axikegu 2021 Chin. Phys. C 45 025002Google Scholar

    [6]

    Aielli G, Bacci C, Barone F 2009 Astrophys. J. 699 1281Google Scholar

    [7]

    Di Girolamo T 2016 Nucl. Part. Phys. Proc. 279-281 79

    [8]

    Bartoli B, Bernardini P, Bi X J 2015 Astrophys. J. 806 20Google Scholar

    [9]

    Bartoli B, Bernardini P, Bi X J 2015 Phys. Rev. D 91 112017Google Scholar

    [10]

    Bartoli B, Bernardini P, Bi X J 2015 Phys. Rev. D 92 092005Google Scholar

    [11]

    Vernetto S 2000 Astropart. Phys. 13 75

    [12]

    Aielli G, Bacci C, Barone F 2008 Astropart. Phys. 30 85Google Scholar

    [13]

    Di Girolamo T, Vallania P, Vigorito C 2011 Astrophys. Space Sci. 7 239Google Scholar

    [14]

    Bartoli B, Bernardini P, Bi X J 2014 Astrophys. J. 794 82Google Scholar

    [15]

    Dasso S, Asorey H 2012 Adv. Space Res. 49 1563Google Scholar

    [16]

    Bartoli B, Bernardini P, Bi X J 2018 Phys. Rev. D 97 042001Google Scholar

    [17]

    周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇 2015 物理学报 64 149202Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y, Wu C Y 2015 Acta Phys. Sin. 64 149202Google Scholar

    [18]

    徐斌, 别业广, 邹丹 2012 空间科学学报 32 501Google Scholar

    Xu B, Bie Y G, Zou D 2012 Chin. J. Space Sci. 32 501Google Scholar

    [19]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T, https://www.ikp.kit.edu/corsika/70.php [2021-04-08]

    [20]

    陈松战, 赵静, 刘烨, 何会海, 侯超, 李秀荣, 张忠泉, 李骢, 刘佳, 李哲, 王玲玉 2017 核电子学与探测技术 37 1101

    Chen S Z, Zhao J, Liu Y, He H H, Hou C, Li X R, Zhang Z Q, Li C, Liu J, Li Z, Wang L Y 2017 Nuclear Electronics & Detection Technology 37 1101

    [21]

    卢晓旭, 顾旻皓, 朱科军, 李飞 2020 核技术 43 80

    Lu X X, Gu M H, Zhu K J, Li F 2020 Nuclear Techniques 43 80

    [22]

    He H H 2018 Radiation Detection Technology and Methods 2 1Google Scholar

    [23]

    曹臻, 陈明君, 陈松战 2019 天文学报 60 19

    Cao Z, Chen M J, Chen S Z 2019 Acta Astronomica Sinica 60 19

    [24]

    Cao Z, Chen M J, Chen S Z 2019 Chin. Astron. Astrophys. 43 457Google Scholar

    [25]

    Jin C, Chen S Z, He H H 2020 Chin. Phys. C 44 065002Google Scholar

    [26]

    Zhang Z Q, Hou C, Cao Z 2017 Nucl. Instrum. Methods A 845 429Google Scholar

    [27]

    Allison J, Amako K, Apostolakis J 2016 Nucl. Instrum. Methods A 835 186Google Scholar

    [28]

    Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 114 171103Google Scholar

    [29]

    Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 115 211101

    [30]

    Aharonian F, An Q, Axikegu 2021 Nucl. Instrum. Methods A 1001 165193Google Scholar

    [31]

    Zhou X X, Gao L L, Zhang Y, Guo Y Q, Zhu Q Q, Jia H Y, Huang D H 2016 Chin. Phys. C 40 075001Google Scholar

    [32]

    Vallania P, Girolamo T Di, Vigorito C 2006 Proceedings of the 20th European Cosmic Ray Symposium, Lisbon, Portugal, September 5–8, 2006 p5

  • 图 1  KM2A-ED阵列(左)和scaler模式中cluster的ED布局图(右)

    Fig. 1.  Layout diagram of KM2A-ED array (left) and the cluster in scaler mode (right).

    图 2  经过1个ED探测器响应后宇宙线计数率分布的模拟结果

    Fig. 2.  Event rate distribution for one ED.

    图 3  Scaler模式中多重数 m ≥ 1, 2, 3和4的计数率分布

    Fig. 3.  Event rate distribution with m ≥ 1, 2, 3 and 4 in scaler mode.

    图 4  Scaler 模式中不同多重数时有效面积随原初能量的分布 (a)质子; (b)氦

    Fig. 4.  The Aeff as a function of the primary energy in scaler mode: (a) Proton; (b) Helium.

    图 5  Scaler模式中不同多重数时有效面积随天顶角的分布 (a)质子; (b)氦

    Fig. 5.  The Aeff as a function of the zenith angle in scaler mode: (a) Proton; (b) Helium.

    图 6  Scaler 模式中不同多重数时探测到的原初质子能量分布

    Fig. 6.  Energy distribution for primary Proton in scaler mode.

    图 7  Scaler 模式中不同多重数时探测到的原初氦能量分布

    Fig. 7.  Energy distribution for primary Helium in scaler mode.

    表 1  Scaler模式中不同多重数时的平均计数率和宇宙线贡献率

    Table 1.  Average rates and the contribution of cosmic rays in scaler mode.

    多重数(m) ≥ 1 ≥ 2 ≥ 3 ≥ 4
    平均计数率88 kHz1400 Hz220 Hz110 Hz
    宇宙线贡献率42.3%62.3%96.9%99.7%
    下载: 导出CSV

    表 2  Scaler模式中探测原初质子和氦的平均有效面积

    Table 2.  Average effective area for primary Proton and Helium in scaler mode.

    多重数(m)Proton: $ \langle $Aeff$ \rangle $ /m2Helium: $ \langle $Aeff$ \rangle $ /m2
    ≥ 1129.6973.07
    ≥ 22.380.91
    ≥ 30.670.49
    ≥ 40.340.27
    下载: 导出CSV

    表 3  Scaler模式中探测原初质子和氦的平均能量

    Table 3.  Average energy of primary Proton and Helium in scaler mode.

    多重数(m)Proton $ \langle $E$ \rangle $/GeVHelium $ \langle $E$ \rangle $/GeV
    ≥ 193.8236.0
    ≥ 21.4 × 1035.4 × 103
    ≥ 36.3 × 1031.4 × 104
    ≥ 49.5 × 1031.9 × 104
    下载: 导出CSV
  • [1]

    张潇, 陈阳 2019 现代物理知识 31 9

    Zhang X, Chen Y 2019 Modern Physics 31 9

    [2]

    周勋秀, 胡红波, 黄庆 2009 物理学报 58 5879Google Scholar

    Zhou X X, Hu H B, Huang Q 2009 Acta Phys. Sin. 58 5879Google Scholar

    [3]

    Bartoli B, Bernardini P, Bi X J 2017 Astrophys. J. 842 31Google Scholar

    [4]

    Abeysekara A U, Alfaro R, Alvarez C 2015 Astrophys. J. 800 78Google Scholar

    [5]

    Aharonian F, An Q, Axikegu 2021 Chin. Phys. C 45 025002Google Scholar

    [6]

    Aielli G, Bacci C, Barone F 2009 Astrophys. J. 699 1281Google Scholar

    [7]

    Di Girolamo T 2016 Nucl. Part. Phys. Proc. 279-281 79

    [8]

    Bartoli B, Bernardini P, Bi X J 2015 Astrophys. J. 806 20Google Scholar

    [9]

    Bartoli B, Bernardini P, Bi X J 2015 Phys. Rev. D 91 112017Google Scholar

    [10]

    Bartoli B, Bernardini P, Bi X J 2015 Phys. Rev. D 92 092005Google Scholar

    [11]

    Vernetto S 2000 Astropart. Phys. 13 75

    [12]

    Aielli G, Bacci C, Barone F 2008 Astropart. Phys. 30 85Google Scholar

    [13]

    Di Girolamo T, Vallania P, Vigorito C 2011 Astrophys. Space Sci. 7 239Google Scholar

    [14]

    Bartoli B, Bernardini P, Bi X J 2014 Astrophys. J. 794 82Google Scholar

    [15]

    Dasso S, Asorey H 2012 Adv. Space Res. 49 1563Google Scholar

    [16]

    Bartoli B, Bernardini P, Bi X J 2018 Phys. Rev. D 97 042001Google Scholar

    [17]

    周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇 2015 物理学报 64 149202Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y, Wu C Y 2015 Acta Phys. Sin. 64 149202Google Scholar

    [18]

    徐斌, 别业广, 邹丹 2012 空间科学学报 32 501Google Scholar

    Xu B, Bie Y G, Zou D 2012 Chin. J. Space Sci. 32 501Google Scholar

    [19]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T, https://www.ikp.kit.edu/corsika/70.php [2021-04-08]

    [20]

    陈松战, 赵静, 刘烨, 何会海, 侯超, 李秀荣, 张忠泉, 李骢, 刘佳, 李哲, 王玲玉 2017 核电子学与探测技术 37 1101

    Chen S Z, Zhao J, Liu Y, He H H, Hou C, Li X R, Zhang Z Q, Li C, Liu J, Li Z, Wang L Y 2017 Nuclear Electronics & Detection Technology 37 1101

    [21]

    卢晓旭, 顾旻皓, 朱科军, 李飞 2020 核技术 43 80

    Lu X X, Gu M H, Zhu K J, Li F 2020 Nuclear Techniques 43 80

    [22]

    He H H 2018 Radiation Detection Technology and Methods 2 1Google Scholar

    [23]

    曹臻, 陈明君, 陈松战 2019 天文学报 60 19

    Cao Z, Chen M J, Chen S Z 2019 Acta Astronomica Sinica 60 19

    [24]

    Cao Z, Chen M J, Chen S Z 2019 Chin. Astron. Astrophys. 43 457Google Scholar

    [25]

    Jin C, Chen S Z, He H H 2020 Chin. Phys. C 44 065002Google Scholar

    [26]

    Zhang Z Q, Hou C, Cao Z 2017 Nucl. Instrum. Methods A 845 429Google Scholar

    [27]

    Allison J, Amako K, Apostolakis J 2016 Nucl. Instrum. Methods A 835 186Google Scholar

    [28]

    Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 114 171103Google Scholar

    [29]

    Aguilar M, Aisa D, Alpat B 2015 Phys. Rev. Lett. 115 211101

    [30]

    Aharonian F, An Q, Axikegu 2021 Nucl. Instrum. Methods A 1001 165193Google Scholar

    [31]

    Zhou X X, Gao L L, Zhang Y, Guo Y Q, Zhu Q Q, Jia H Y, Huang D H 2016 Chin. Phys. C 40 075001Google Scholar

    [32]

    Vallania P, Girolamo T Di, Vigorito C 2006 Proceedings of the 20th European Cosmic Ray Symposium, Lisbon, Portugal, September 5–8, 2006 p5

  • [1] 阿西克古, 周勋秀, 张云峰. 雷暴电场对LHAASO观测面宇宙线次级光子的影响. 物理学报, 2024, 73(12): 129201. doi: 10.7498/aps.73.20240341
    [2] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [3] 张丰, 刘虎, 祝凤荣. 膝区宇宙线广延大气簇射次级成分的特征. 物理学报, 2022, 71(24): 249601. doi: 10.7498/aps.71.20221556
    [4] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, 2021, 70(22): 229501. doi: 10.7498/aps.70.20210747
    [5] 王超, 周艳丽, 吴凡, 陈英才. 高分子链在分子刷表面吸附的Monte Carlo模拟. 物理学报, 2020, 69(16): 168201. doi: 10.7498/aps.69.20200411
    [6] 王超, 陈英才, 周艳丽, 罗孟波. 两嵌段高分子链在周期管道内扩散的Monte Carlo模拟. 物理学报, 2017, 66(1): 018201. doi: 10.7498/aps.66.018201
    [7] 鲁昌兵, 许鹏, 鲍杰, 王朝辉, 张凯, 任杰, 刘艳芬. 快中子照相模拟分析与实验验证. 物理学报, 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [8] 周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇. 近地雷暴电场与羊八井地面宇宙线关联的模拟研究. 物理学报, 2015, 64(14): 149202. doi: 10.7498/aps.64.149202
    [9] 郑晖, 张崇宏, 陈波, 杨义涛, 赖新春. 氦离子低温预辐照对不锈钢中氦泡生长抑制作用的Monte Carlo模拟研究. 物理学报, 2014, 63(10): 106102. doi: 10.7498/aps.63.106102
    [10] 王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰. 雷暴电场对宇宙射线次级粒子 子的影响研究. 物理学报, 2012, 61(15): 159202. doi: 10.7498/aps.61.159202
    [11] 周宇璐, 李仁顺, 张宝玲, 邓爱红, 侯氢. 材料中He深度分布演化的Monte Carlo模拟研究. 物理学报, 2011, 60(6): 060702. doi: 10.7498/aps.60.060702
    [12] 郭宝增, 张锁良, 刘鑫. 钎锌矿相GaN电子高场输运特性的Monte Carlo 模拟研究. 物理学报, 2011, 60(6): 068701. doi: 10.7498/aps.60.068701
    [13] 高茜, 娄晓燕, 祁阳, 单文光. Zn1-xMnxO纳米薄膜磁有序性的Monte Carlo模拟. 物理学报, 2011, 60(3): 036401. doi: 10.7498/aps.60.036401
    [14] 姚文静, 王楠. Ni-15%Mo合金熔体热物理性质的Monte Carlo模拟. 物理学报, 2009, 58(6): 4053-4058. doi: 10.7498/aps.58.4053
    [15] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [16] 肖 沛, 张增明, 孙 霞, 丁泽军. 投影电子束光刻中电子穿透掩膜的Monte Carlo模拟. 物理学报, 2006, 55(11): 5803-5809. doi: 10.7498/aps.55.5803
    [17] 高国良, 钱昌吉, 钟 瑞, 罗孟波, 叶高翔. 非均质基底表面上团簇生长的Monte Carlo模拟. 物理学报, 2006, 55(9): 4460-4465. doi: 10.7498/aps.55.4460
    [18] 高国良, 钱昌吉, 李 洪, 黄晓虹, 谷温静, 叶高翔. 含杂质无格点基底表面分枝状凝聚体的计算机模拟. 物理学报, 2005, 54(6): 2600-2605. doi: 10.7498/aps.54.2600
    [19] 吴锋民, 施建青, 吴自勤. 高温下金属薄膜生长初期的模拟研究. 物理学报, 2001, 50(8): 1555-1559. doi: 10.7498/aps.50.1555
    [20] 尚也淳, 张义门, 张玉明. 6H-SiC电子输运的Monte Carlo模拟. 物理学报, 2000, 49(9): 1786-1791. doi: 10.7498/aps.49.1786
计量
  • 文章访问数:  3443
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-05
  • 修回日期:  2021-05-20
  • 上网日期:  2021-09-26
  • 刊出日期:  2021-10-05

/

返回文章
返回