搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CORSIKA模拟研究雷暴云中相对论逃逸电子雪崩机制

周天 周勋秀 何会海 杨慈 郭科骏 陈学健 魏如梦 纪穑源 黄代绘

引用本文:
Citation:

基于CORSIKA模拟研究雷暴云中相对论逃逸电子雪崩机制

周天, 周勋秀, 何会海, 杨慈, 郭科骏, 陈学健, 魏如梦, 纪穑源, 黄代绘

Simulation study on the Relativistic Runaway Electron Avalanche in Thundercloud with CORSIKA

ZHOU Tian, ZHOU Xunxiu, HE Huihai, YANG Ci, GUO Kejun, CHEN Xuejian, WEI Rumeng, JI Seyuan, HUANG Daihui
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 来自地球大气层的伽马射线闪(TGF)常伴随雷暴、闪电活动,现已成为宇宙线物理和大气物理交叉学科中的研究热点。相对论逃逸电子雪崩机制(RREA)被普遍认为可解释卫星和地面实验中伴随闪电先导过程的TGF现象。本文基于CORSIKA软件包,模拟了宇宙线次级电子在雷暴云强电场中引发的RREA过程,并研究了RREA电子的强度和能量分布。结果表明,随着雷暴云内电场强度和电场区垂直尺度的增加,RREA电子数目均呈指数增长;发生RREA机制的雪崩距离常数(λ)随电场强度的增加而减小,当电场为-1600 V/cm和-3000 V/cm时,λ分别为~282 m和~69 m。RREA电子的能谱随电场强度和电场区垂直尺度的增加而逐渐变软,其平均能量随电场强度的增加而增加,当雷暴云内电场区垂直尺度大于400 m时,RREA电子的平均能量逐渐趋于稳定。模拟发现,电场为-3000 V/cm、电场区的垂直尺度为800 m时,RREA电子的平均能量约为11.7 MeV。本文通过Monte Carlo方法,复现了大气中难以直接观测的RREA过程,该模拟结果为研究TGF源区特征提供了重要信息,为地面实验探测下行TGF提供了线索,并有助于研究大气中闪电的触发机制。
    Terrestrial Gamma-ray Flashes (TGFs) originating from the Earth's atmosphere, accompanied by thunderstorms and lightning activity, is one of the hot spots in the interdisciplinary of cosmic ray and atmospheric physics. Over the years, satellite experiments have detected thousands of upward TGFs during thunderstorms, while ground-based experiments have observed some downward TGFs. Nowadays, it is generally accepted that TGFs accompanying lightning leader observed by satellite-based and ground-based experiments involve relativistic runaway electron avalanche (RREA) production. Due to triggering the RREA process needing a very large AEF strength and region, it is difficult to study the RREA process through ground-based experiments. In this paper, we adopt the CORSIKA, combined with a vertically uniform electric field model, to simulate the intensity and energy distribution of RREA electrons in thundercloud with different electric field strengths induced by seed electrons and the secondary electrons in extensive air shower (EAS) from vertical protons with different primary energies. The results show that the number of RREA electrons increases exponentially with the thickness of the thunderclouds, and also increases exponentially with the electric field strength. After pass through the atmosphere with an electric field of -3000 V/cm and a thickness of 800 m, the number of secondary electrons in RREA process increases by approximately 3×104 times. The characteristic length of avalanche (λ) decreases as the electric field strength increases. When the electric field is -1600 V/cm and -3000 V/cm, the λ are approximately ~282 m and ~69 m, respectively. The energy spectrum of RREA electrons gradually softens with increasing layer thickness and strength of electric field, and their mean energy increases with the electric field strength, when the thundercloud thickness exceeds 400 m, the mean energy of RREA electrons gradually stabilizes.When secondary particles pass through a thundercloud with an electric field strength of -3000 V/cm and a thickness of 800 m, the mean energy of RREA electrons is approximately 11.7 MeV. Through the Monte Carlo simulations, we successfully simulated the RREA process that is difficult to observe directly in the atmosphere. The simulation results provide important information for studying the characteristics of TGF source regions, offer clues for detecting downward TGF in ground-based experiments, and contribute to the research on the triggering mechanism of lightning in the atmosphere. In addition, our simulation results are expected to elucidate the relationship between TGF and lightning activity, promoting interdisciplinary research in the fields of atmospheric physics and cosmic ray physics.
  • [1]

    Huang Z H, Zhou X X, Huang D H, Jia H Y, Chen S Z, Ma X H, Liu D, Axikegu, Zhao B, Chen L, Wang P H 2021 Acta Phys. Sin. 70 199301 (in Chinese) [黄志成,周勋秀,黄代绘,贾焕玉,陈松战,马欣华,刘栋,阿西克古,赵兵,陈林和王培汉 2021 物理学报 70 199301]

    [2]

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201(in Chinese) [刘冬霞,郄秀书,王志超, 吴学珂和潘伦湘 2013物理学报 62 219201]

    [3]

    Marshall T C, Stolzenburg M, Maggio C R, Coleman L M 2005 Geophys. Res.Lett. 32 L03813

    [4]

    Stolzenburg M, Marshall T C, Rust W D, Bruning E, MacGorman D R, Hamlin T 2007 Geophys. Res.Lett. 34 L04804

    [5]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32D

    [6]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463

    [7]

    Lv F C, Zhang Y J, Lu G P 2023 Sci. China-Earth Sci. 53 421-443(in Chinese) [吕凡超,张义军,陆高鹏 2023中国科学:地球科学53 421]

    [8]

    Inan U S, Reising S C, Fishman G J, Horack J M 1996 Geophys. Res. Lett. 23 1017

    [9]

    Fishman G J, Bhat P N, Mallozzi R, Horack J M, Koshut T, Kouveliotou C, Pendleton G N, Meegan C A, Wilson R B, Paciesas W S, Goodman S, Christian H 1994 Science 264 1313

    [10]

    Briggs M S, Fishman G J, Connaughton V, Bhat P N, Paciesas W S, Preece R D, Wilson-Hodge C, Chaplin V L, Kippen R M, Kienlin A V, Meegan C A, Bissaldi E, Dwyer J R, Smith D M, Holzworth R H, Grove J E, Chekhtman A 2010 J. Geophys. Res. 115 A07323

    [11]

    Marisaldi M, Fuschino F, Labanti C, Galli M, Longo F, Del Monte E, Barbiellini G, Tavani M, Giuliani A, Moretti E, Vercellone S, Costa E, Cutini S, Donnarumma I, Evangelista Y, Feroci M, Lapshov I, Lazzarotto F, Lipari P, Mereghetti S, Pacciani L, Rapisarda M, Soffitta P, Trifoglio M, Argan A, Boffelli F, Bulgarelli A, Caraveo P, Cattaneo W P, Chen A, Cocco V, D'Ammando F, De Paris G, Di Cocco G, Di Persio G, Ferrari A, Fiorini M, Froysland T, Gianotti F, Morselli A, Pellizzoni A, Perotti F, Picozza P, Piano G, Pilia M, Prest M, Pucella G, Rappoldi A, Rubini A, Sabatini S, Striani E, Trois A, Vallazza E, Vittorini V, Zambra A, Zanello D, Antonelli L A, Colafrancesco S, Gasparrini D, Giommi P, Pittori C, Preger B, Santolamazza P, Verrecchia F, Salotti L 2010 J. Geophys. Res. 115 A00E13

    [12]

    The Insight-HXMT team 2020 Sci. China-Phys. Mech. Astron. 63 249502

    [13]

    Chen C, Xiao S, Xiong S L, Yu N, Wen X Y, Gong K, Li X Q, Li C Y, Hou D J, Yang X T, Zhao Z J, Zhu Y X, Zhang D L, An Z H, Zhao X Y, Xu Y P, Wang Y S 2021 Exp. Astron. 52 45

    [14]

    Dwyer J R, Rassoul H K, Al-Dayeh M, Caraway L, Wright B, Chrest A, Uman M A, Rakov V A, Rambo K J, Jordan D M, Jerauld J, Smyth C 2004 Geophys. Res. Lett. 31 L05119

    [15]

    Hare B M, Uman M A, Dwyer J R, Joradn D M, Blggerstaff M L, Caicedo J A, Carvalho F L, Wilkes R A, Kotovsky D A, Gamerota W R, Pilkey J T, Ngin T K, Moore R C, Rasoule H K, Cummer S A, Grove J E, Nag A, Betten D P, Bozarth A 2016 J. Geophys. Res. Atmos. 121 6511

    [16]

    Enoto T, Wada Y, Furuta Y, Nakazawa K, Yuasa T, Okuda K, Makihima K, Sato M, Sato Y, Nakano T, Umemoto D, Tsuchiya H, GROWTH collaboration 2017 Nature 551 481

    [17]

    Abbasi R U, Abu‐Zayyad T, Allen M, Barcikowski E, Belz J W, Bergman D R, Blake S A, Byrne M, Cady R, Cheon B G, Chiba J, Chikawa M, Fujii T, Fukushima M, Furlich G, Goto T, Hanlon W, Hayashi D, Hayashida N, Hibino K, Honda D, Ikeda D, Inoue N, Ishii T, Ito H, Ivanov D, Jeong S, Jui C C H, Kadota K, Kakimoto F, Kalashev O, Kasahara K, Kawai H, Kawamura S, Kawata K, Kido E, Kim B R, Kim J H, Kim J, Kishigami S, Krehbiel P R, Kuzmin V, Kwon Y J, Lan R, LeVon R, Lundquist J P, Machida K, Martens K, Matuyama T, Matthews J N, Minamino M, Mukaiyama K, Myers I, Nagataki S, Nakamura R, Nakamura T, Nonaka T, Ogio S, Ohnishi M, Ohoka H, Okuda T, Ono M, Onogi R, Oshima A, Ozawa S, Park I H, Pshirkov M S, Remington J, Rison W, Rodeheffer D, Rodriguez D C, Rubtsov G, Ryub D, Sagawa H, Sakaki N, Sakurai H, Seki K, Sekino Y, Shah P D, Shibata F, Shibata H, Shimodaira H, Shin B K, Shin J H, Smith J D, Sokolsky P, Springer R W, Stokes B T, Stroman T, Taka T, Takeda M, Takeshita A, Taketa A, Takita M, Tameda Y, Tanaka H, Tanaka K, Tanaka M, Tanaka M, Thomas R J, Thomas S B, Thomson G B, Tinyakov P, Tkachev I, Tokuno H, Tomida T, Troitsky S, Tsuneda Y, Uchihori Y, Udo S, Urban F, Vasiloff G, Wong T, Yamamoto M, Yamane R, Yamaoka H, Yamazaki K, Yang J, Yashiro K, Yoneda Y, Yoshida S, Yoshii H, Zundel Z 2018 J. Geophys. Res. Atmos. 123 6864

    [18]

    Wada Y, Enoto T, Nakazawa K, Furuta Y, Yuasa T, Nakamura Y, Morimoto T, Matsumoto T, Makishima K, Tsuchiya H 2019 Phys. Rev. Lett. 123 061103

    [19]

    Balz J W, Krehbiel P R, Remington J, Stanley M A, Abbasi R U, LeVon R, Rison W, Rodeheffer D, Abu-Zayyad T, Allen M, Barcikowski E, Bergman D R, Blake S A, Byrne M, Cady R, Cheon B G, Chikawa M, di Matteo A, Fujii T, Fujiwara F, Fukushima M, Furlich G, Hanlon W, Hayashi Y, Hayashida N, Hibino K, Honda K, Ikeda D, Inadomi T, Inoue N, Ishii T, Ito H, Ivanov D, Iwakura H, Jeong H M, Jeong S, Jui C C H, Kadota K, Kakimoto F, Kalashev O, Kasahara R, Kasami A, Kawamura S, Kawata K, Kido E, Kim B H, Kim J H, Kim J H, Kwon Y J, Lee K H, Lubsandrozhiev B, Lundquist J P, Machida K, Matsumiya H, Matthews J N, Matuyama T, Mayta R, Minamino M, Mukai K, Myers I, Nagataki S, Nakai R, Nakamura K, Nakamura T, Nakamura T, Nakamura T, Nakamura T, Nonaka T, Oda H, Ogio S, Ohnishi M, Ohoka H, Oku K, Okuda T, Omura Y, Ono M, Oshima A, Ozawa S, Park I H, Potts M, Pshirkov M S, Rodriguez D C, Rubtsov G, Ryu D, Sagawa H, Sahara Y, Saito K, Saito K, Sakaki N, Sako T, Sakurai N, Sano K, Seki K, Sekino K, Shibata F, Shibata T, Shimodaira H, Shin B K, Shin H S, Smith J D, Sokolsky P, Sone N, Stokes B T, Stroman T A, Takagi Y, Takahashi Y, Takeda M, Taketa A, Takita M, Tanaka K, Tanaka K, Tanaka M, Tanaka M, Tanoue S, Thomas S B, Thomson G B, Tinyakov P, Tkachev I, Tokuno H, Tomida T, Troitsky S, Tsunesada Y, Uchihori Y, Udo S, Uehama T, Urban F, Wallace T, Wong T, Yamamoto M, Yamaoka H, Yamazaki K, Yashiro K, Yosei M, Yoshii H, Zhezher Y, Zundel Z 2020 J. Geophys. Res. Atmos. 125 e2019JD031940

    [20]

    Qie X S, Wang J F 2010 Adv. Earth Sci. 25 893-906 (in Chinese) [郄秀书,王俊芳 2010 地球科学进展 25 893]

    [21]

    Dwyer J R 2003 Geophys. Res. Lett. 30 2055

    [22]

    Symbalisty E M D, Roussel-Dupre R A, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575

    [23]

    Skeltved A B, Ostgaard N, Carlson B, Gjesteland T, Celestin S 2014 J. Geophys. Res. 119 9174

    [24]

    Li X Q, Zhou H Z, Jiang R B, Li P, Song L J, Li Y N, Li W, Zheng Y 2018 Nucl. Electron. Detect. Technol. 38 0360-0367 (in Chinese) [李小强,周红召,蒋如斌2018核电子学与探测技术38 0360]

    [25]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463

    [26]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 FZKA: Forschungszentrum Karlsruhe GmbH, Karube, 6019

    [27]

    Zhou X X, Wang X J, Huang D H, Jia H Y 2016 Chin. J. Space Sci. 36 49-55 (in Chinese) [周勋秀, 王新建, 黄代绘和贾焕玉 2016空间科学学报 36 49]

    [28]

    Dwyer J R, Smith D M, Cummer S A 2012 Space Sci. Rev. 173 133

    [29]

    Babich L P, Donskoy E N, Il'Kaev R I, Kutsyk I M, Roussel-Dupre R A 2004 Plasma Phys. Rep. 30 616

  • [1] 王德鑫, 张蕊, 尉德康, 那蕙, 姚张浩, 吴凌赫, 张苏雅拉吐, 梁泰然, 黄美容, 王志龙, 白宇, 黄永顺, 杨雪, 张嘉文, 刘梦迪, 马蔷, 于静, 纪秀艳, 于伊丽琦, 邵学鹏. 基于塑料闪烁体探测器的宇宙线缪子与太阳调制效应观测. 物理学报, doi: 10.7498/aps.74.20241704
    [2] 阿西克古, 周勋秀, 张云峰. 雷暴电场对LHAASO观测面宇宙线次级光子的影响. 物理学报, doi: 10.7498/aps.73.20240341
    [3] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [4] 张丰, 刘虎, 祝凤荣. 膝区宇宙线广延大气簇射次级成分的特征. 物理学报, doi: 10.7498/aps.71.20221556
    [5] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, doi: 10.7498/aps.70.20210747
    [6] 黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉. 高海拔宇宙线观测实验中scaler模式的模拟研究. 物理学报, doi: 10.7498/aps.70.20210632
    [7] 王超, 周艳丽, 吴凡, 陈英才. 高分子链在分子刷表面吸附的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.69.20200411
    [8] 王超, 陈英才, 周艳丽, 罗孟波. 两嵌段高分子链在周期管道内扩散的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.66.018201
    [9] 周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇. 近地雷暴电场与羊八井地面宇宙线关联的模拟研究. 物理学报, doi: 10.7498/aps.64.149202
    [10] 郑晖, 张崇宏, 陈波, 杨义涛, 赖新春. 氦离子低温预辐照对不锈钢中氦泡生长抑制作用的Monte Carlo模拟研究. 物理学报, doi: 10.7498/aps.63.106102
    [11] 王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰. 雷暴电场对宇宙射线次级粒子 子的影响研究. 物理学报, doi: 10.7498/aps.61.159202
    [12] 周宇璐, 李仁顺, 张宝玲, 邓爱红, 侯氢. 材料中He深度分布演化的Monte Carlo模拟研究. 物理学报, doi: 10.7498/aps.60.060702
    [13] 高茜, 娄晓燕, 祁阳, 单文光. Zn1-xMnxO纳米薄膜磁有序性的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.60.036401
    [14] 郭宝增, 张锁良, 刘鑫. 钎锌矿相GaN电子高场输运特性的Monte Carlo 模拟研究. 物理学报, doi: 10.7498/aps.60.068701
    [15] 姚文静, 王楠. Ni-15%Mo合金熔体热物理性质的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.58.4053
    [16] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.58.2397
    [17] 高国良, 钱昌吉, 钟 瑞, 罗孟波, 叶高翔. 非均质基底表面上团簇生长的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.55.4460
    [18] 肖 沛, 张增明, 孙 霞, 丁泽军. 投影电子束光刻中电子穿透掩膜的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.55.5803
    [19] 邓朝勇, 赵辉, 王永生. 薄膜电致发光器件电子能量的空间分布. 物理学报, doi: 10.7498/aps.50.1385
    [20] 尚也淳, 张义门, 张玉明. 6H-SiC电子输运的Monte Carlo模拟. 物理学报, doi: 10.7498/aps.49.1786
计量
  • 文章访问数:  174
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-14

/

返回文章
返回