搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CORSIKA模拟研究雷暴云中相对论逃逸电子雪崩机制

周天 周勋秀 何会海 杨慈 郭科骏 陈学健 魏如梦 纪穑源 黄代绘

引用本文:
Citation:

基于CORSIKA模拟研究雷暴云中相对论逃逸电子雪崩机制

周天, 周勋秀, 何会海, 杨慈, 郭科骏, 陈学健, 魏如梦, 纪穑源, 黄代绘

Simulation study on the relativistic runaway electron avalanche in thundercloud with CORSIKA

ZHOU Tian, ZHOU Xunxiu, HE Huihai, YANG Ci, GUO Kejun, CHEN Xuejian, WEI Rumeng, JI Seyuan, HUANG Daihui
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 来自地球大气层的伽马射线闪(TGF)常伴随雷暴、闪电活动, 现已成为宇宙线物理和大气物理交叉学科中的研究热点. 相对论逃逸电子雪崩机制(RREA)被普遍认为可解释卫星和地面实验中伴随闪电先导过程的TGF现象. 本文基于CORSIKA软件包, 模拟了宇宙线次级电子在雷暴云强电场中引发的RREA过程, 并研究了RREA电子的强度和能量分布. 结果表明, 随着雷暴云内电场强度和电场区垂直尺度的增加, RREA电子数目均呈指数增长; 发生RREA机制的雪崩距离常数(λ)随电场强度的增加而减小, 当电场为–1600 V/cm和–3000 V/cm时, λ分别约为282 m和69 m. RREA电子的能谱随电场强度和电场区垂直尺度的增加而逐渐变软, 其平均能量随电场强度的增加而增加, 当雷暴云内电场区垂直尺度大于400 m时, RREA电子的平均能量逐渐趋于稳定. 模拟发现, 电场为–3000 V/cm、电场区的垂直尺度为800 m时, RREA电子的平均能量约为11.7 MeV. 本文通过蒙特卡罗方法复现了大气中难以直接观测的RREA过程, 该模拟结果为研究TGF源区特征提供了重要信息, 为地面实验探测下行TGF提供了线索, 并有助于研究大气中闪电的触发机制.
    Terrestrial Gamma-ray flashes (TGFs) originating from the Earth’s atmosphere, accompanied by thunderstorms and lightning activity, are one of the hot spots in the interdisciplinary of cosmic ray and atmospheric physics. Over the years, satellite experiments have detected thousands of upward TGFs during thunderstorms, while ground-based experiments have observed some downward TGFs. Nowadays, it is widely believed that TGFs accompanying lightning leaders observed by satellite-based and ground-based experiments involve relativistic runaway electron avalanche (RREA) production. Due to triggering the relativistic runaway electron avalanche (RREA) process needing a very large (AEF) strength and region, it is difficult to study the RREA process through ground-based experiments. In this paper, CORSIKA 7.7410 software package, combined with a vertically uniform electric field model, is adopted to simulate the intensity and energy distribution of RREA electrons in thundercloud with different electric field strengths induced by seed electrons and the secondary electrons in extensive air shower (EAS) from vertical protons with different primary energies. The results show that the number of RREA electrons increases exponentially with the thickness of the thunderclouds increasing, and also increases exponentially with the electric field strength rising. After passing through the atmosphere with an electric field of –3000 V/cm and a thickness of 800 m, the number of secondary electrons in RREA process increases by approximately 3×104 times. The characteristic length of avalanche (λ) decreases as the electric field strength increases. When the electric field is –1600 V/cm and –3000 V/cm, the λ is approximately ~282 m and ~69 m, respectively. The energy spectrum of RREA electrons gradually softens with the increase of layer thickness and strength of electric field, and their average energy increases with the increase of electric field strength, when the thundercloud thickness exceeds 400 m, the mean energy of RREA electrons gradually stabilizes. When secondary particles pass through a thundercloud with an electric field strength of –3000 V/cm and a thickness of 800 m, the mean energy of RREA electrons is approximately 11.7 MeV. Through the Monte Carlo simulations, the RREA process, which is difficult to observe directly in the atmosphere, is successfully simulated. The simulation results provide important information for studying the characteristics of TGF source regions, offer clues for detecting downward TGF in ground-based experiments, and contribute to the research on the triggering mechanism of lightning in the atmosphere. In addition, our simulation results are expected to elucidate the relationship between TGF and lightning activity, promoting interdisciplinary research in the fields of atmospheric physics and cosmic ray physics.
  • 图 1  种子电子(100 MeV)在不同大气电场中的簇射过程

    Fig. 1.  Cascade process of seed electrons (100 MeV) in different electric fields.

    图 2  在–3000 V/cm电场下, 不同原初能量种子电子产生RREA电子的能量分布

    Fig. 2.  Energy distributions of RREA electrons induced by seed electron for different primary energies in –3000 V/cm.

    图 3  种子电子产生RREA电子的平均能量随电场区垂直尺度(a)和电场强度(b)的变化关系

    Fig. 3.  Mean energy of RREA electrons induced by seed electron as a function of the layer thickness (a) and strength (b) of the electric field.

    图 4  不同原初能量质子簇射的次级电子数目随雷暴云内电场区垂直尺度的变化

    Fig. 4.  Number of secondary electrons induced by protons as a function of the thickness of the electric field layer for different primary energies.

    图 5  雪崩距离常数$ \lambda $与电场强度的关系

    Fig. 5.  Avalanche length $ \lambda $ as a function of electric field strength.

    图 6  不同原初能量质子簇射的次级电子数目随雷暴电场的变化

    Fig. 6.  Number of secondary electrons induced by protons as a function of the electric field strength for different primary energies.

    图 7  不同原初能量下$ {\text{Ln(}}{N_{{\text{re}}}}/{N_0}) $与雪崩电场倍数$ \delta $的关系

    Fig. 7.  $ {\text{Ln}}({N_{{\text{re}}}}/{N_0}) $ as a function of different values of $ \delta $ for different primary energies.

    图 8  原初质子(10 TeV)簇射的次级电子在不同电场强度下的能量分布

    Fig. 8.  Energy distribution of secondary electrons induced by protons (10 TeV) with respect to electric field strength.

    图 9  原初质子(10 TeV)簇射的次级电子在不同雷暴云厚度下的能量分布

    Fig. 9.  Energy distribution of secondary electrons induced by protons (10 TeV) with respect to thickness of the electric field layer.

    图 10  次级电子平均能量随雷暴云内电场区的垂直尺度(a)和雷暴电场的变化(b)

    Fig. 10.  Mean energy of secondary electrons as a function of the layer thickness (a) and strength (b) of the electric field.

  • [1]

    黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉 2021 物理学报 70 199301Google Scholar

    Huang Z H, Zhou X X, Huang D H, Jia H Y, Chen S Z, Ma X H, Liu D, Axikegu, Zhao B, Chen L, Wang P H 2021 Acta Phys. Sin. 70 199301Google Scholar

    [2]

    刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘 2013 物理学报 62 219201Google Scholar

    Liu D X, Qie X S, Wang Z C, Wu X K, Pan L X 2013 Acta Phys. Sin. 62 219201Google Scholar

    [3]

    Marshall T C, Stolzenburg M, Maggio C R, Coleman L M 2005 Geophys. Res. Lett. 32 L03813

    [4]

    Stolzenburg M, Marshall T C, Rust W D, Bruning E, MacGorman D R, Hamlin T 2007 Geophys. Res. Lett. 34 L04804

    [5]

    Wilson C T R 1924 Proc. Phys. Soc. London 37 32DGoogle Scholar

    [6]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463Google Scholar

    [7]

    吕凡超, 张义军, 陆高鹏 2023 中国科学: 地球科学 53 421

    Lü F C, Zhang Y J, Lu G P 2023 Sci. China-Earth Sci. 53 421

    [8]

    Inan U S, Reising S C, Fishman G J, Horack J M 1996 Geophys. Res. Lett. 23 1017Google Scholar

    [9]

    Fishman G J, Bhat P N, Mallozzi R, Horack J M, Koshut T, Kouveliotou C, Pendleton G N, Meegan C A, Wilson R B, Paciesas W S, Goodman S, Christian H 1994 Science 264 1313Google Scholar

    [10]

    Briggs M S, Fishman G J, Connaughton V, Bhat P N, Paciesas W S, Preece R D, Wilson-Hodge C, Chaplin V L, Kippen R M, Kienlin A V, Meegan C A, Bissaldi E, Dwyer J R, Smith D M, Holzworth R H, Grove J E, Chekhtman A 2010 J. Geophys. Res. 115 A07323

    [11]

    Marisaldi M, Fuschino F, Labanti C, Galli M, Longo F, Del Monte E, Barbiellini G, Tavani M, Giuliani A, Moretti E, et al. 2010 J. Geophys. Res. 115 A00E13

    [12]

    The Insight-HXMT team 2020 Sci. China-Phys. Mech. Astron. 63 249502Google Scholar

    [13]

    Chen C, Xiao S, Xiong S L, Yu N, Wen X Y, Gong K, Li X Q, Li C Y, Hou D J, Yang X T, Zhao Z J, Zhu Y X, Zhang D L, An Z H, Zhao X Y, Xu Y P, Wang Y S 2021 Exp. Astron. 52 45Google Scholar

    [14]

    Dwyer J R, Rassoul H K, Al-Dayeh M, Caraway L, Wright B, Chrest A, Uman M A, Rakov V A, Rambo K J, Jordan D M, Jerauld J, Smyth C 2004 Geophys. Res. Lett. 31 L05119

    [15]

    Hare B M, Uman M A, Dwyer J R, Joradn D M, Blggerstaff M L, Caicedo J A, Carvalho F L, Wilkes R A, Kotovsky D A, Gamerota W R, Pilkey J T, Ngin T K, Moore R C, Rasoule H K, Cummer S A, Grove J E, Nag A, Betten D P, Bozarth A 2016 J. Geophys. Res. Atmos. 121 6511Google Scholar

    [16]

    Enoto T, Wada Y, Furuta Y, Nakazawa K, Yuasa T, Okuda K, Makihima K, Sato M, Sato Y, Nakano T, Umemoto D, Tsuchiya H, GROWTH Collaboration 2017 Nature 551 481Google Scholar

    [17]

    Abbasi R U, Abu-Zayyad T, Allen M, Barcikowski E, Belz J W, Bergman D R, Blake S A, Byrne M, Cady R, Cheon B G, et al. 2018 J. Geophys. Res. Atmos. 123 6864Google Scholar

    [18]

    Wada Y, Enoto T, Nakazawa K, Furuta Y, Yuasa T, Nakamura Y, Morimoto T, Matsumoto T, Makishima K, Tsuchiya H 2019 Phys. Rev. Lett. 123 061103Google Scholar

    [19]

    Balz J W, Krehbiel P R, Remington J, Stanley M A, Abbasi R U, LeVon R, Rison W, Rodeheffer D, Abu-Zayyad T, Allen M, et al. 2020 J. Geophys. Res. Atmos. 125 e2019JD031940Google Scholar

    [20]

    郄秀书, 王俊芳 2010 地球科学进展 25 893

    Qie X S, Wang J F 2010 Adv. Earth Sci. 25 893

    [21]

    Dwyer J R 2003 Geophys. Res. Lett. 30 2055

    [22]

    Symbalisty E M D, Roussel-Dupre R A, Yukhimuk V A 1998 IEEE Trans. Plasma Sci. 26 1575Google Scholar

    [23]

    Skeltved A B, Ostgaard N, Carlson B, Gjesteland T, Celestin S 2014 J. Geophys. Res. 119 9174Google Scholar

    [24]

    李小强, 周红召, 蒋如斌2018核电子学与探测技术38 0360

    Li X Q, Zhou H Z, Jiang R B, Li P, Song L J, Li Y N, Li W, Zheng Y 2018 Nucl. Electron. Detect. Technol. 38 0360-0367

    [25]

    Gurevich A V, Milikh G M, Roussel-Dupre R 1992 Phys. Lett. A 165 463Google Scholar

    [26]

    Heck D, Knapp J, Capdevielle J N, Schatz G, Thouw T 1998 FZKA: Forschungszentrum Karlsruhe GmbH, Karube, 6019

    [27]

    周勋秀, 王新建, 黄代绘, 贾焕玉 2016 空间科学学报 36 49Google Scholar

    Zhou X X, Wang X J, Huang D H, Jia H Y 2016 Chin. J. Space Sci. 36 49Google Scholar

    [28]

    Dwyer J R, Smith D M, Cummer S A 2012 Space Sci. Rev. 173 133Google Scholar

    [29]

    Babich L P, Donskoy E N, Il'Kaev R I, Kutsyk I M, Roussel-Dupre R A 2004 Plasma Phys. Rep. 30 616Google Scholar

  • [1] 邢天, 刘书焕, 王炫, 王超, 周俊烨, 张锡民, 陈伟. SiGe合金和SiGe/Si异质结构质子位移损伤的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.74.20250162
    [2] 王德鑫, 张蕊, 尉德康, 那蕙, 姚张浩, 吴凌赫, 张苏雅拉吐, 梁泰然, 黄美容, 王志龙, 白宇, 黄永顺, 杨雪, 张嘉文, 刘梦迪, 马蔷, 于静, 纪秀艳, 于伊丽琦, 邵学鹏. 基于塑料闪烁体探测器的宇宙线缪子与太阳调制效应观测. 物理学报, doi: 10.7498/aps.74.20241704
    [3] 阿西克古, 周勋秀, 张云峰. 雷暴电场对LHAASO观测面宇宙线次级光子的影响. 物理学报, doi: 10.7498/aps.73.20240341
    [4] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [5] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤. 物理学报, doi: 10.7498/aps.71.20212041
    [6] 苏宁, 刘圆圆, 王力, 程建平. 秦始皇陵地宫宇宙射线缪子吸收成像模拟研究. 物理学报, doi: 10.7498/aps.71.20211582
    [7] 张丰, 刘虎, 祝凤荣. 膝区宇宙线广延大气簇射次级成分的特征. 物理学报, doi: 10.7498/aps.71.20221556
    [8] 黄志成, 周勋秀, 黄代绘, 贾焕玉, 陈松战, 马欣华, 刘栋, 阿西克古, 赵兵, 陈林, 王培汉. 高海拔宇宙线观测实验中scaler模式的模拟研究. 物理学报, doi: 10.7498/aps.70.20210632
    [9] 韩瑞龙, 蔡明辉, 杨涛, 许亮亮, 夏清, 韩建伟. 宇宙线高能粒子对测试质量充电机制. 物理学报, doi: 10.7498/aps.70.20210747
    [10] 周勋秀, 王新建, 黄代绘, 贾焕玉, 吴超勇. 近地雷暴电场与羊八井地面宇宙线关联的模拟研究. 物理学报, doi: 10.7498/aps.64.149202
    [11] 华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.62.244401
    [12] 兰木, 向钢, 辜刚旭, 张析. 一种晶体表面水平纳米线生长机理的蒙特卡罗模拟研究. 物理学报, doi: 10.7498/aps.61.228101
    [13] 肖渊, 王晓方, 滕建, 陈晓虎, 陈媛, 洪伟. 激光加速电子束放射照相的模拟研究. 物理学报, doi: 10.7498/aps.61.234102
    [14] 王俊芳, 郄秀书, 卢红, 张吉龙, 于晓霞, 石峰. 雷暴电场对宇宙射线次级粒子 子的影响研究. 物理学报, doi: 10.7498/aps.61.159202
    [15] 樊小辉, 赵兴宇, 王丽娜, 张丽丽, 周恒为, 张晋鲁, 黄以能. 分子串模型中空间弛豫模式的弛豫动力学的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.60.126401
    [16] 高飞, 山田亮子, 渡边光男, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, doi: 10.7498/aps.58.3584
    [17] 徐兰青, 李 晖, 肖郑颖. 基于蒙特卡罗模拟的散射介质中后向光散射模型及分析应用. 物理学报, doi: 10.7498/aps.57.6030
    [18] 和青芳, 徐 征, 刘德昂, 徐叙瑢. 蒙特卡罗方法模拟薄膜电致发光器件中碰撞离化的作用. 物理学报, doi: 10.7498/aps.55.1997
    [19] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.54.880
    [20] 郭宝增. 用全带Monte Carlo方法模拟纤锌矿相GaN和ZnO材料的电子输运特性. 物理学报, doi: 10.7498/aps.51.2344
计量
  • 文章访问数:  309
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-30
  • 修回日期:  2025-07-19
  • 上网日期:  2025-08-14

/

返回文章
返回