搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称电极对二维SiC场效应晶体管工作性能调控与低功耗优化

陈建举 彭淑平 邓淑玲 周文 范志强 张小姣

引用本文:
Citation:

非对称电极对二维SiC场效应晶体管工作性能调控与低功耗优化

陈建举, 彭淑平, 邓淑玲, 周文, 范志强, 张小姣

Performance and low power optimization of two-dimensional SiC field effect transistors with asymmetric electrodes

Chen Jian-Ju, Peng Shu-Ping, Deng Shu-Ling, Zhou Wen, Fan Zhi-Qiang, Zhang Xiao-Jiao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文利用密度泛函理论结合非平衡格林函数的第一性原理方法,研究了金属相1T-MoS2和Pd金属为非对称源漏电极的5 nm二维SiC场效应晶体管的输运性质,并系统分析了1T-MoS2电极层数增加以及工作电压缩减对器件工作性能的影响机制.研究结果表明1T-MoS2层数增加会增大器件空穴肖特基势垒高度,但同时提高带边输运系数,二者相互竞争共同影响器件的工作性能.SiC的宽禁带特征可以显著抑制短沟道效应,使所有器件都可以满足关态要求.更重要的是,所有器件在0.64 V工作电压下的亚阈值摆幅都接近60 mV/dec物理极限,且各项工作性能参数均能显著超越国际设备和系统路线图(IRDS)为高性能器件设定的标准.此外,器件的工作电压可以进一步降低至0.52 V,对应的功耗延迟积和延迟时间低至0.086 fJ/μm和0.038 ps,仅为IRDS 标准的14%和4%.本工作提出的非对称源漏电极设计策略不仅很好地解决了现有二维材料场效应晶体管开态电流不高以及短沟道效应制约关态电流的问题,更为后摩尔时代超低功耗纳米电子器件的发展提供了重要解决方案.
    By using the first-principles method based on density functional theory and non-equilibrium Green's function, we studied the transport properties of 5 nm two-dimensional SiC Field-effect transistors with asymmetric metal phases 1T-MoS2 source and Pd drain electrodes. The influence mechanism of the increase of 1T-MoS2 electrode layers and the decrease of working electrical compression on the device’s performance is systematically analyzed. The Schottky barriers extracted from the zero bias and zero gate voltage transport spectra show that the valence band maximum of SiC in the channel regions of MFET, BFET and TFET are closer to the Fermi level after the source drain electrode is balanced. Therefore, the three devices belong to P-type contact, and the hole Schottky barrier height increases with the increase of the number of 1T-MoS2 layers of the source electrode, which are 0.6, 0.76 and 0.88 eV, respectively. In addition, the increase of 1T-MoS2 layers will also lead to the increase of the density of states in the source electrode, thereby improving the transport coefficient at the band edge. The effect of the two on the transport capacity of the device is opposite, and there is a competitive relationship. The transfer characteristics of devices show that the wide band gap of SiC can significantly suppress the short channel effect, so that all devices can meet the requirements of off state. More importantly, the subthreshold swing of all devices at 0.64 V operating voltage is close to the physical limit of 60 mV/dec. The ON-current of MFET, BFET and TFET can reach 1553, 1601 and 1702 μA/μm under the more stringent IRDS HP standard, and the three performance parameters of intrinsic gate capacitance, power-delay product and delay time can greatly exceed the international road map of equipment and systems (IRDS) standards for high-performance devices. In addition, the working voltage of MFET can be reduced to 0.52 V, and the corresponding power-delay product and delay time are as low as 0.086 FJ/μm and 0.038 ps, which are only 14% and 4% of the IRDS standard. The asymmetric source drain electrode design strategy proposed in this work not only solves the problems of low on state current and short channel effect restricting off state current of existing two-dimensional material Field-effect transistors, but also provides an important solution for the development of ultra-low power nano electronic devices in the post Moore era.
  • [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotech. 7, 699

    [2]

    Zhao J, Yao C and Zeng H 2024 Acta Phys. Sin. 73 126802 (in Chinese) [赵俊, 姚璨, 曾晖 2024 物理学报 73 12680]

    [3]

    Cui Y, Li B, Li J B and Wei Z M 2018 Sci. China-Phys. Mech. Astron. 61 016801

    [4]

    Wu D, Cao X H, Jia P J, Zeng Y J, Feng Y X, Tang L M, Zhou W X and Chen K Q 2020 Sci. China-Phys. Mech. Astron. 63 276811

    [5]

    Liu Q, Huang X D, Chen J J, Wu D, Deng X Q, Fan Z Q, Xie H Q and Chen K Q 2025 Appl. Phys. Lett. 126 253502

    [6]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147

    [7]

    Cui Y, Zhou Z Q, Li T, Wang K Y, Li J B and Wei Z M 2019 Adv. Funct. Mater. 29 1900040

    [8]

    Ren Y, Zhou X Y and Zhou G H 2021 Phys. Rev. B 103 045405

    [9]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q and Chen K Q 2021 Phys. Rev. B 104 045412

    [10]

    Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829

    [11]

    Quhe R G, Wang Y Y and Lu J 2015 Chin. Phys. B 24 088105

    [12]

    Huang X D, Liu Q, Xie H Q, Deng X Q, Fan Z Q, Wu D and Chen K Q 2023 IEEE Trans. Electron. Dev. 70 5462

    [13]

    Guo Y, Pan F, Yao B B, Meng H and Lü J 2024 Acta Phys. Sin. 73 207304 (in Chinese) [郭颖, 潘峰, 姚彬彬, 孟豪, 吕劲 2024 物理学报 73 207304]

    [14]

    Qu H Z, Zhang S L, Cao J, Wu Z H, Chai Y, Li W S, Li L J, Ren W C, Wang X R and Zeng H B 2024 Science Bulletin 69 1427

    [15]

    Ma L K, Tao Q Y, Chen Y, Lu Z Y, Liu L T, Li Z W, Lu D L, Wang Y L, Liao L and Liu Y 2023 Nano Lett. 23 8303

    [16]

    Chabi S, Guler Z, Brearley A J, Benavidez A D and Luk T S 2021 Nanomaterials 11 1799

    [17]

    Zhou B H, Zhou B L, Liu G, Guo D and Zhou G H 2016 Physica B 500 106

    [18]

    Farokhnezhad M, Esmaeilzadeh M, Ahmadi S and Pournaghavi N 2015 J. Appl. Phys. 117 173913

    [19]

    Cui X Q, Liu Q, Fan Z Q and Zhang Z H 2020 Org. Electron. 84 105808

    [20]

    Deng X L, Ji X F, Wang D J and Huang L Q 2022 Acta Phys. Sin. 71 058102 (in Chinese) [邓旭良, 冀先飞, 王德君, 黄玲琴 2022 物理学报 71 058102]

    [21]

    Xie H Q, Li J Y, Liu G, Cai X Y and Fan Z Q 2019 IEEE Trans. Electron Devices 66 5111

    [22]

    Xie H Q, Wu D, Deng X Q, Fan Z Q, Zhou W X, Xiang C Q and Liu Y Y 2021 Chin. Phys. B 30 117102

    [23]

    International roadmap for devices and systems (IRDS), 2023 edition, https://irds.ieee.org

    [24]

    Okyay A K, Chui C O and Saraswat K C. 2006 Appl. Phys. Lett. 88 063506

    [25]

    Li D W, Zhao M, Liang K, Ren H, Wu Q, Wang H and Zhu B W 2020 Nanoscal 12 21610

    [26]

    Wu J Y, C. Y T, Li S, Zhang T and Chu D 2018 ACS Appl. Mater. Interfaces 10 24613

    [27]

    Liu Z, Cao G, Guan Z Z, Tian Y, Liu J D, Chen J, Deng S Z and Liu F 2024 J. Mater. Chem. C 12 17395

    [28]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanperä A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2019 J. Phys. Condens. Matter 32 015901

    [29]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207

    [30]

    Liu H Neal, A T and Ye P D 2012 ACS Nano 6 8563

    [31]

    Xie H Q, Li J Y, Liu G, Cai X Y and Fan Z Q 2020 IEEE Trans. Electron Devices 67 4130

    [32]

    Zhao P, Chauhan J and Guo J 2009 Nano Lett. 9 684

    [33]

    Fan Z Q, Zhang Z H and Yang S Y 2020 Nanoscale 12 21750

  • [1] 李渝豪, 朱丽君, 张弛, 李林, 曾长淦. 石墨烯和二维超导体NbSe2层间拖拽效应. 物理学报, doi: 10.7498/aps.74.20250361
    [2] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, doi: 10.7498/aps.72.20230528
    [3] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, doi: 10.7498/aps.72.20231324
    [4] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 物理学报, doi: 10.7498/aps.72.20231786
    [5] 贾晓菲, 魏群, 张文鹏, 何亮, 武振华. 10 nm金属氧化物半导体场效应晶体管中的热噪声特性分析. 物理学报, doi: 10.7498/aps.72.20230661
    [6] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 物理学报, doi: 10.7498/aps.71.20220407
    [7] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, doi: 10.7498/aps.71.20220939
    [8] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, doi: 10.7498/aps.71.20220738
    [9] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, doi: 10.7498/aps.69.20200497
    [10] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性. 物理学报, doi: 10.7498/aps.69.20191013
    [11] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.69.20191960
    [12] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, doi: 10.7498/aps.67.20180129
    [13] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, doi: 10.7498/aps.67.20171965
    [14] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, doi: 10.7498/aps.66.208101
    [15] 刘畅, 卢继武, 吴汪然, 唐晓雨, 张睿, 俞文杰, 王曦, 赵毅. 超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性. 物理学报, doi: 10.7498/aps.64.167305
    [16] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型. 物理学报, doi: 10.7498/aps.62.108501
    [17] 刘兴辉, 张俊松, 王绩伟, 敖强, 王震, 马迎, 李新, 王振世, 王瑞玉. 基于非平衡Green函数理论的峰值掺杂-低掺杂漏结构碳纳米管场效应晶体管输运研究. 物理学报, doi: 10.7498/aps.61.107302
    [18] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性. 物理学报, doi: 10.7498/aps.58.4156
    [19] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性. 物理学报, doi: 10.7498/aps.56.5221
    [20] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型. 物理学报, doi: 10.7498/aps.55.3670
计量
  • 文章访问数:  204
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-12

/

返回文章
返回