搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称电极对二维SiC场效应晶体管工作性能调控与低功耗优化

陈建举 彭淑平 邓淑玲 周文 范志强 张小姣

引用本文:
Citation:

非对称电极对二维SiC场效应晶体管工作性能调控与低功耗优化

陈建举, 彭淑平, 邓淑玲, 周文, 范志强, 张小姣
cstr: 32037.14.aps.74.20250849

Performance and low power consumption of two-dimensional SiC field effect transistors regulated and optimized with asymmetric electrodes

CHEN Jianju, PENG Shuping, DENG Shuling, ZHOU Wen, FAN Zhiqiang, ZHANG Xiaojiao
cstr: 32037.14.aps.74.20250849
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用密度泛函理论结合非平衡格林函数的第一性原理方法, 研究了金属相1T-MoS2和Pd金属为非对称源漏电极的5 nm二维SiC场效应晶体管的输运性质, 并系统分析了1T-MoS2电极层数增加以及工作电压减小对器件工作性能的影响机制. 研究结果表明1T-MoS2层数增加会增大器件空穴肖特基势垒高度, 但同时提高带边输运系数, 二者相互竞争共同影响器件的工作性能. SiC的宽禁带特征可以显著抑制短沟道效应, 使所有器件都可以满足关态要求. 更重要的是, 所有器件在0. 64 V工作电压下的亚阈值摆幅都接近60 mV/dec物理极限, 且各项工作性能参数均能显著超越国际设备和系统路线图(IRDS)为高性能器件设定的标准. 此外, 器件的工作电压可以进一步降低至0.52 V, 对应的功耗延迟积和延迟时间低至0.086 fJ/μm和0.038 ps, 仅为IRDS标准的14%和4%. 本工作提出的非对称源漏电极设计策略, 不仅很好地解决了现有二维材料场效应晶体管开态电流不高以及短沟道效应制约关态电流的问题, 更为后摩尔时代超低功耗纳米电子器件的发展提供了重要的解决方案.
    By using the first-principles method based on density functional theory and non-equilibrium Green’s function, the transport properties of 5-nm two-dimensional SiC field-effect transistors with asymmetric metal phase 1T-MoS2 sources and Pd drain electrodes are investigated. The influence mechanism of increasing the electrode layers of 1T-MoS2 and reducing the working electrical compression on the device performance is systematically analyzed. The Schottky barriers extracted from the zero bias and zero gate voltage transport spectra show that the valence band maximum of SiC in the channel regions of MFET, BFET and TFET are closer to the Fermi level after the source drain electrode has been balanced. Therefore, these three devices belong to P-type contact, and the height of the hole Schottky barrier increases with the increase of the number of 1T-MoS2 layers in the source electrode, which are 0.6, 0.76, and 0.88 eV, respectively. In addition, the increase of 1T-MoS2 layers will also lead to the increase of the density of states in the source electrode, thereby improving the transport coefficient at the band edge. The effects of the two on the transport capacity of the device are opposite, and there is a competitive relationship. The transfer characteristics of devices show that the wide band gap of SiC can significantly suppress the short channel effect, so that all devices can meet the requirements of Off-state. More importantly, the subthreshold swings of all devices at an operating voltage of 0.64 V are all close to the physical limit of 60 mV/dec. The ON-state currents of MFET, BFET and TFET can reach 1553, 1601 and 1702 μA/μm under the more stringent IRDS HP standard, and the three performance parameters, i.e. intrinsic gate capacitance, power-delay product and delay time, can greatly exceed the standards in the international road map of equipment and systems (IRDS) for high-performance devices. In addition, the working voltage of MFET can be reduced to 0.52 V, and the corresponding power-delay product and delay time are as low as 0.086 fJ/μm and 0.038 ps, which are only 14% and 4% of the IRDS standard. The asymmetric source drain electrode design strategy proposed in this work not only solves the problems about low On-state current and short channel effect restricting Off-state current of existing two-dimensional material field-effect transistors, but also provides an important solution for developing ultra-low power nano electronic devices in the post Moore era.
      通信作者: 范志强, zqfan@csust.edu.cn ; 张小姣, xjzhang@hutb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074046)资助的课题.
      Corresponding author: FAN Zhiqiang, zqfan@csust.edu.cn ; ZHANG Xiaojiao, xjzhang@hutb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074046).
    [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [2]

    赵俊, 姚璨, 曾晖 2024 物理学报 73 126802Google Scholar

    Zhao J, Yao C, Zeng H 2024 Acta Phys. Sin. 73 126802Google Scholar

    [3]

    Cui Y, Li B, Li J B, Wei Z M 2018 Sci. China-Phys. Mech. Astron. 61 016801Google Scholar

    [4]

    Wu D, Cao X H, Jia P J, et al. 2020 Sci. China-Phys. Mech. Astron. 63 276811Google Scholar

    [5]

    Liu Q, Huang X D, Chen J J, Wu D, Deng X Q, Fan Z Q, Xie H Q, Chen K Q 2025 Appl. Phys. Lett. 126 253502Google Scholar

    [6]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [7]

    Cui Y, Zhou Z Q, Li T, Wang K Y, Li J B, Wei Z M 2019 Adv. Funct. Mater. 29 1900040Google Scholar

    [8]

    Ren Y, Zhou X Y, Zhou G H 2021 Phys. Rev. B 103 045405Google Scholar

    [9]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [10]

    Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829Google Scholar

    [11]

    Quhe R G, Wang Y Y, Lu J 2015 Chin. Phys. B 24 088105Google Scholar

    [12]

    Huang X D, Liu Q, Xie H Q, Deng X Q, Fan Z Q, Wu D, Chen K Q 2023 IEEE Trans. Electron. Dev. 70 5462Google Scholar

    [13]

    郭颖, 潘峰, 姚彬彬, 孟豪, 吕劲 2024 物理学报 73 207304Google Scholar

    Guo Y, Pan F, Yao B B, Meng H, Lü J 2024 Acta Phys. Sin. 73 207304Google Scholar

    [14]

    Qu H Z, Zhang S L, Cao J, et al. 2024 Sci. Bull. 69 1427Google Scholar

    [15]

    Ma L K, Tao Q Y, Chen Y, Lu Z Y, Liu L T, Li Z W, Lu D L, Wang Y L, Liao L, Liu Y 2023 Nano Lett. 23 8303Google Scholar

    [16]

    Chabi S, Guler Z, Brearley A J, Benavidez A D, Luk T S 2021 Nanomaterials 11 1799Google Scholar

    [17]

    Zhou B H, Zhou B L, Liu G, et al. 2016 Physica B 500 106Google Scholar

    [18]

    Farokhnezhad M, Esmaeilzadeh M, Ahmadi S, Pournaghavi N 2015 J. Appl. Phys. 117 173913Google Scholar

    [19]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [20]

    邓旭良, 冀先飞, 王德君, 黄玲琴 2022 物理学报 71 058102Google Scholar

    Deng X L, Ji X F, Wang D J, Huang L Q 2022 Acta Phys. Sin. 71 058102Google Scholar

    [21]

    Xie H Q, Li J Y, Liu G, Cai X Y, Fan Z Q 2019 IEEE Trans. Electron Devices 66 5111Google Scholar

    [22]

    Xie H Q, Wu D, Deng X Q, Fan Z Q, Zhou W X, Xiang C Q, Liu Y Y 2021 Chin. Phys. B 30 117102Google Scholar

    [23]

    International roadmap for devices and systems (IRDS)(2023 Edition) https://irds.ieee.org

    [24]

    Okyay A K, Chui C O, Saraswat K C 2006 Appl. Phys. Lett. 88 063506Google Scholar

    [25]

    Li D W, Zhao M, Liang K, et al. 2020 Nanoscal 12 21610Google Scholar

    [26]

    Wu J Y, Chun Y T, Li S P, Zhang T, Chu D P 2018 ACS Appl. Mater. Interfaces 10 24613Google Scholar

    [27]

    Liu Z, Cao G, Guan Z Z, Tian Y, Liu J D, Chen J, Deng S Z, Liu F 2024 J. Mater. Chem. C 12 17395Google Scholar

    [28]

    Smidstrup S, Markussen T, Vancraeyveld P, et al. 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [29]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [30]

    Liu H, Neal A T, Ye P D 2012 ACS Nano 6 8563Google Scholar

    [31]

    Xie H Q, Li J Y, Liu G, Cai X Y, Fan Z Q 2020 IEEE Trans. Electron Devices 67 4130Google Scholar

    [32]

    Zhao P, Chauhan J, Guo J 2009 Nano Lett. 9 684Google Scholar

    [33]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

  • 图 1  金属相1T-MoS2和Pd金属为非对称源漏电极的5 nm二维SiC场效应晶体管的结构图

    Fig. 1.  Detailed structure of 5 nm FET based on two-dimensional SiC with metal 1T-MoS2 contact (source) and palladium contact (drain).

    图 2  (a) MFET, (b) BFET和(c) TFET在零偏压和零栅极电压下的输运谱和投影局域态密度. 费米能级在能量标度中设置为零

    Fig. 2.  Transmission spectra and the projected local density of states (LDOS) of (a) MFET, (b) BFET, and (c) TFET under zero-bias voltage and zero-gate voltage. The Fermi level is set to zero in the energy scale.

    图 3  MFET, BFET和TFET的转移特性(a), 开态电流(b)和亚阈值摆幅(c)

    Fig. 3.  Transfer characteristic (a), ON-current (b), and subthreshold swing (c) of MFET, BFET and TFET, respectively.

    图 4  (a) MFET在0. 6 V, 0. 56 V, 0. 52 V, 0. 48 V和0. 44 V 工作电压VDD下的(a)转移特性, (b)开态电流和(c)亚阈值摆幅

    Fig. 4.  (a) Transfer characteristic, (b) ON-current, and (c) subthreshold swing of MFET under VDD of 0.6 V, 0.56 V, 0.52 V, 0.48 V, and 0.44 V, respectively.

    表 1  MFET, BFET和TFET的性能与IRDS高性能设备要求的对比

    Table 1.  Performances of the MFET, BFET和TFET against the HP devices requirements of the IRDS.

    Cg/
    (fF·μm–1)
    PDP/
    (fJ·μm–1)
    τ/ps
    IRDS标准 0.39 0.49 0.96
    MFET (VDD = 0.64 V) 0.150 0.061 0.064
    BFET (VDD = 0.64 V) 0.155 0.063 0.064
    TFET (VDD = 0.64 V) 0.134 0.055 0.051
    MFET (VDD = 0.60 V) 0.146 0.071 0.056
    MFET (VDD = 0.56 V) 0.138 0.078 0.043
    MFET (VDD = 0.52 V) 0.142 0.086 0.038
    下载: 导出CSV
  • [1]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [2]

    赵俊, 姚璨, 曾晖 2024 物理学报 73 126802Google Scholar

    Zhao J, Yao C, Zeng H 2024 Acta Phys. Sin. 73 126802Google Scholar

    [3]

    Cui Y, Li B, Li J B, Wei Z M 2018 Sci. China-Phys. Mech. Astron. 61 016801Google Scholar

    [4]

    Wu D, Cao X H, Jia P J, et al. 2020 Sci. China-Phys. Mech. Astron. 63 276811Google Scholar

    [5]

    Liu Q, Huang X D, Chen J J, Wu D, Deng X Q, Fan Z Q, Xie H Q, Chen K Q 2025 Appl. Phys. Lett. 126 253502Google Scholar

    [6]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [7]

    Cui Y, Zhou Z Q, Li T, Wang K Y, Li J B, Wei Z M 2019 Adv. Funct. Mater. 29 1900040Google Scholar

    [8]

    Ren Y, Zhou X Y, Zhou G H 2021 Phys. Rev. B 103 045405Google Scholar

    [9]

    Liu Q, Li J J, Wu D, Deng X Q, Zhang Z H, Fan Z Q, Chen K Q 2021 Phys. Rev. B 104 045412Google Scholar

    [10]

    Zhou W X, Cheng Y, Chen K Q, Xie G F, Wang T, Zhang G 2020 Adv. Funct. Mater. 30 1903829Google Scholar

    [11]

    Quhe R G, Wang Y Y, Lu J 2015 Chin. Phys. B 24 088105Google Scholar

    [12]

    Huang X D, Liu Q, Xie H Q, Deng X Q, Fan Z Q, Wu D, Chen K Q 2023 IEEE Trans. Electron. Dev. 70 5462Google Scholar

    [13]

    郭颖, 潘峰, 姚彬彬, 孟豪, 吕劲 2024 物理学报 73 207304Google Scholar

    Guo Y, Pan F, Yao B B, Meng H, Lü J 2024 Acta Phys. Sin. 73 207304Google Scholar

    [14]

    Qu H Z, Zhang S L, Cao J, et al. 2024 Sci. Bull. 69 1427Google Scholar

    [15]

    Ma L K, Tao Q Y, Chen Y, Lu Z Y, Liu L T, Li Z W, Lu D L, Wang Y L, Liao L, Liu Y 2023 Nano Lett. 23 8303Google Scholar

    [16]

    Chabi S, Guler Z, Brearley A J, Benavidez A D, Luk T S 2021 Nanomaterials 11 1799Google Scholar

    [17]

    Zhou B H, Zhou B L, Liu G, et al. 2016 Physica B 500 106Google Scholar

    [18]

    Farokhnezhad M, Esmaeilzadeh M, Ahmadi S, Pournaghavi N 2015 J. Appl. Phys. 117 173913Google Scholar

    [19]

    Cui X Q, Liu Q, Fan Z Q, Zhang Z H 2020 Org. Electron. 84 105808Google Scholar

    [20]

    邓旭良, 冀先飞, 王德君, 黄玲琴 2022 物理学报 71 058102Google Scholar

    Deng X L, Ji X F, Wang D J, Huang L Q 2022 Acta Phys. Sin. 71 058102Google Scholar

    [21]

    Xie H Q, Li J Y, Liu G, Cai X Y, Fan Z Q 2019 IEEE Trans. Electron Devices 66 5111Google Scholar

    [22]

    Xie H Q, Wu D, Deng X Q, Fan Z Q, Zhou W X, Xiang C Q, Liu Y Y 2021 Chin. Phys. B 30 117102Google Scholar

    [23]

    International roadmap for devices and systems (IRDS)(2023 Edition) https://irds.ieee.org

    [24]

    Okyay A K, Chui C O, Saraswat K C 2006 Appl. Phys. Lett. 88 063506Google Scholar

    [25]

    Li D W, Zhao M, Liang K, et al. 2020 Nanoscal 12 21610Google Scholar

    [26]

    Wu J Y, Chun Y T, Li S P, Zhang T, Chu D P 2018 ACS Appl. Mater. Interfaces 10 24613Google Scholar

    [27]

    Liu Z, Cao G, Guan Z Z, Tian Y, Liu J D, Chen J, Deng S Z, Liu F 2024 J. Mater. Chem. C 12 17395Google Scholar

    [28]

    Smidstrup S, Markussen T, Vancraeyveld P, et al. 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [29]

    Büttiker M, Imry Y, Landauer R, Pinhas S 1985 Phys. Rev. B 31 6207Google Scholar

    [30]

    Liu H, Neal A T, Ye P D 2012 ACS Nano 6 8563Google Scholar

    [31]

    Xie H Q, Li J Y, Liu G, Cai X Y, Fan Z Q 2020 IEEE Trans. Electron Devices 67 4130Google Scholar

    [32]

    Zhao P, Chauhan J, Guo J 2009 Nano Lett. 9 684Google Scholar

    [33]

    Fan Z Q, Zhang Z H, Yang S Y 2020 Nanoscale 12 21750Google Scholar

  • [1] 李渝豪, 朱丽君, 张弛, 李林, 曾长淦. 石墨烯和二维超导体NbSe2层间拖拽效应. 物理学报, 2025, 74(14): 147302. doi: 10.7498/aps.74.20250361
    [2] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [3] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [4] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 物理学报, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [5] 贾晓菲, 魏群, 张文鹏, 何亮, 武振华. 10 nm金属氧化物半导体场效应晶体管中的热噪声特性分析. 物理学报, 2023, 72(22): 227303. doi: 10.7498/aps.72.20230661
    [6] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质. 物理学报, 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [7] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究. 物理学报, 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [8] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [9] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [10] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性. 物理学报, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [11] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [12] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [13] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [14] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [15] 刘畅, 卢继武, 吴汪然, 唐晓雨, 张睿, 俞文杰, 王曦, 赵毅. 超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性. 物理学报, 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [16] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型. 物理学报, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [17] 刘兴辉, 张俊松, 王绩伟, 敖强, 王震, 马迎, 李新, 王振世, 王瑞玉. 基于非平衡Green函数理论的峰值掺杂-低掺杂漏结构碳纳米管场效应晶体管输运研究. 物理学报, 2012, 61(10): 107302. doi: 10.7498/aps.61.107302
    [18] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性. 物理学报, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [19] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性. 物理学报, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
    [20] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型. 物理学报, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
计量
  • 文章访问数:  686
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-29
  • 修回日期:  2025-08-08
  • 上网日期:  2025-08-12
  • 刊出日期:  2025-10-05

/

返回文章
返回