搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于超导脑磁系统的集成SQUID芯片的设计与性能评估

李加林 张国峰 李思瑶 王甜珺 魏雪齐 李华 古元冬 孙立敏

引用本文:
Citation:

应用于超导脑磁系统的集成SQUID芯片的设计与性能评估

李加林, 张国峰, 李思瑶, 王甜珺, 魏雪齐, 李华, 古元冬, 孙立敏

Design and Performance Evaluation of Integrated SQUID Chips for Superconducting Brain Magnetometer Systems

Li Jialin, Zhang Guofeng, Li Siyao, Wang Tianjun, Wei Xueqi, Li Hua, Gu Yuandong, Sun Limin
Article Text (iFLYTEK Translation)
PDF
导出引用
  • SQUID作为一种超灵敏的磁通传感器,在生物磁探测、低场核磁共振、地球物理探矿等领域得到广泛应用。本文设计开发了一种用于脑磁(MEG)系统的集成SQUID芯片,并进行了批量封装测试。其中,每个芯片上集成了两个一阶平面梯度计和一个磁强计,采用亚微米约瑟夫森结制备技术,实现0.7 μm ×0.7 μm的亚微米结尺寸。SQUID与探测线圈采用Nb超导引线连接,集成到同一芯片上。我们对171个SQUID器件的测试结果显示,这些器件在磁场白噪声、I-V特性、V-Φ特性等方面表现优异。我们制备的SQUID器件工作电流集中在15~20μA区间,电压摆幅集中在80~120 μV之间。此外,超过80%的SQUID器件的磁场白噪声低于5 fT/√Hz,能够满足多通道SQUID脑磁系统的要求。
    The Superconducting Quantum Interference Device (SQUID) is one of the most sensitive flux sensors, which is critical in fields such as biomagnetism, low-field nuclear magnetic resonance (NMR), and geophysics. In this paper, we present a detailed investigation of the integrated magnetoencephalography (MEG) SQUID chip, which consists of a magnetometer and two gradiometers. The SQUID and pick-up coils are fabricated on different-sized wafers. The SQUID is fabricated on a commercial silicon substrate using micro- and nano-fabrication processes, including thin-film growth, iline stepper photolithography, and reactive ion etching (RIE). The sub-micron Josephson junction technology is employed to acquire a junction size of 0.7 μm × 0.7 μm, with a junction capacitance of only 0.05 pF. The pick-up coil is designed as a single-turn coil for a magnetometer and a planar first-order gradient coil for a gradient sensor. The MEG SQUID chips are tested in a well-shielded room with the heliumliquid temperature (4.2 K). Customized low-voltage noise readout circuit and source measure units are used to characterize the magnetic field white noise, current-voltage (IV) characteristics, and voltage modulation amplitude of 171 SQUID channels. The results show that 81% of the SQUID chips exhibit the lower magnetic field noise (< 5 fT/√Hz), and the high modulation amplitudes (in the range of 80 ~ 120 μV) with the low working currents of 15 ~ 20 μA, yielding a wafer yield rate of 78%. In summary, the SQUIDs show excellent performance in terms of magnetic field white noises, modulation amplitudes, and working currents, which are suitable for the very weak magnetic signal detection. One future work will focus on optimizing the SQUID chip fabrication process to minimize performance variations between chips on the same wafer.
  • [1]

    Ding H S, Chen G H, Zhang L H, Huang X G, Yang Q S 2006 J. Eng. Sci. 28 863 (in Chinese) [丁红胜, 陈赓华, 张利华, 黄旭光, 杨乾声 2006 工程科学 学报 28 863]

    [2]

    LI H, Zhang M Y 2025 IEEE Trans.Appl.Supercond. 74 1

    [3]

    Maslennikov Y V, Slobodchikov Y V, Krymov V A. Gulyaev Y V 2023 Pattern Recognit. Image Anal. 33 1402

    [4]

    Sheng J W, Gao J H 2001 PHYSICS 50 463 (in Chinese) [盛经纬, 高家红 2021 物理 50 463]

    [5]

    Lin J, Wang M C, Zhao J 2020 Journal of Harbin Institute of Technology (New Series). 27 101

    [6]

    QI H H 2004 Ph. D. Dissertation (QingHuangdao: YanShan University) (in Chinese) [漆汉宏 2004 博士学位论文(秦皇岛:燕山大学]

    [7]

    Persky E, Sochnikov I, Kalisky B 2022 Annu.Rev.Condens.Matter Phys. 13 385

    [8]

    Sochnikov I,Davino D, Kalisky B 2020 Phys.Rev.Appl. 14 014020

    [9]

    Granata C, Vettoliere A, Vaccarone R 2007 IEEE Trans.Appl. Supercond. 17 796

    [10]

    Koelle D, Kleiner R, Ludwig F, Dantsker E, John C 1999 Rev.Mod. Phys.71 631

    [11]

    ENPUKU K, MINOTANI T 2001 EICE T ELECTRON. 84 1

    [12]

    Faley M I, Dammers J, Maslennikov Y V, Schneiderman J F, Winkler D, Koshelets VP, Shah N J,Dunin-Borkowski R E 2017 Supercond.Sci. Technol. 30 83001

    [13]

    Bechstein S, Köhn C, Drung D, Jan-Hendrik S, Kieler O, Morosh V,Schurig T 2017 Supercond.Sci.Technol. 30 34007

    [14]

    Carmine Granata, Vettoliere Antonio 2016 Phys.Rep. 614 1

    [15]

    Cantor R, Hall J 2015 IEEE Trans.Appl.Supercond. 15 82

    [16]

    Xiong W, Ying L L, Wang H, Zhang G F, Wang Z 2015 Proceedings of 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Shanghai China, November 20-23, 2015 p282

    [17]

    Schmelz M, Zakosarenko V, Schönau T, Anders S, Kunert J, Meyer M, Meyer H-G, Stolz R 2017 Supercond. Sci. Technol. 30 74010

    [18]

    Grönberg L, Kiviranta M, Vesterinen V, Lehtinen J, Simbierowicz S, Luomahaara J, Prunnila M, Hassel J 2017 Supercond. Sci. Technol. 30 125016

    [19]

    Storm J H, Kieler O, Korber R. 2020 IEEE Trans. Appl. Supercond. 30 1

    [20]

    Zhang G f, Zhang X, Wang Y l, Rong L L, Xie X M, Wang Z 2019 Physica C Supercond.Appl. 562 32

    [21]

    Silver A H, Zimmerma J 1967 Phys Phys. Rev. 157 314

    [22]

    Xie M, Schneiderman J F, Chukharkin M, Kalaboukhov A, Whitmarsh S, Lundqvist D, Winkler D 2015 IEEE Trans.Appl.Supercond. 25 6940248

    [23]

    Ni Z 2024 Ph.D.Dissertation (shanghai: Shanghai Institute of Microsystem and Information Technology) (in Chinese) [倪志 2024 博士学位论文(上海:中国 科学院上海微系统与信息技术研究所]

    [24]

    Drung D 2003 Supercond.Sci.Technol. 16 1320

    [25]

    Enpuku K, Yoshida K, Kohjiro S 1986 J.Appl.Phys. 60 4218

    [26]

    Wang Y L, Zhang S L, Zhang G F, Xu X F, Zhang C X, Wang Y, Xie X M 2020 Physica C Supercond.Appl. 575 1353685

    [27]

    LI H, Zhang M Y 2024 Physica C Supercond.Appl. 625 1354575

  • [1] 张露露, 白乐乐, 杨煜林, 杨永彪, 王彦华, 温馨, 何军, 王军民. 采用反抽运光改善光泵铷原子磁强计的灵敏度. 物理学报, doi: 10.7498/aps.70.20210920
    [2] 韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇. 低噪声超导量子干涉器件磁强计设计与制备. 物理学报, doi: 10.7498/aps.68.20190483
    [3] 赵国荣, 黄婧丽, 苏艳琴, 孙聪. 基于滚动时域估计的飞行器姿态估计及三轴磁强计在线校正. 物理学报, doi: 10.7498/aps.64.210502
    [4] 郭志超, 索红莉, 刘志勇, 刘敏, 马麟. SQUID法和Campbell法测量超导材料的研究. 物理学报, doi: 10.7498/aps.61.177401
    [5] 张树林, 刘扬波, 曾佳, 王永良, 孔祥燕, 谢晓明. 基于低温超导量子干涉器件的脑听觉激励磁场探测. 物理学报, doi: 10.7498/aps.61.020701
    [6] 鄂鹏, 段萍, 江滨浩, 刘辉, 魏立秋, 徐殿国. 磁场梯度对Hall推力器放电特性影响的实验研究. 物理学报, doi: 10.7498/aps.59.7182
    [7] 高 翱, 王 强, 王春江, 刘 铁, 张 超, 赫冀成. 强磁场条件下Mn-Sb梯度复合材料的制备. 物理学报, doi: 10.7498/aps.57.767
    [8] 晋芳伟, 任忠鸣, 任维丽, 邓 康, 钟云波. 强梯度磁场下金属熔体中析出相晶粒迁移的动力学研究. 物理学报, doi: 10.7498/aps.56.3851
    [9] 白 云, 刘新元, 何定武, 汝鸿羽, 齐 亮, 季敏标, 赵 巍, 谢飞翔, 聂瑞娟, 马 平, 戴远东, 王福仁. 在SQUID心磁测量中基于奇异值分解和自适应滤波的噪声消除法. 物理学报, doi: 10.7498/aps.55.2651
    [10] 刘新元, 谢柏青, 戴远东, 王福仁, 李壮志, 马 平, 谢飞翔, 杨 涛, 聂瑞娟. 射频SQUID心磁图数据自适应滤波研究. 物理学报, doi: 10.7498/aps.54.1937
    [11] 郎佩琳, 陈 珂, 郑东宁, 张鸣剑, 漆汉宏, 赵忠贤. 高阶高温超导量子干涉器件平面式梯度计的设计. 物理学报, doi: 10.7498/aps.53.3530
    [12] 刘新元, 谢飞翔, 孟树超, 马 平, 杨 涛, 聂瑞娟, 王守证, 王福仁, 戴远东. 大有效面积的高Tc rf SQUID. 物理学报, doi: 10.7498/aps.52.2580
    [13] 丁红胜, 韩冰, 陈赓华, 张利华, 杨乾声. 一种抑制市电对高温SQUID干扰的新方法. 物理学报, doi: 10.7498/aps.51.220
    [14] 马平, 姚坤, 谢飞翔, 张升原, 邓鹏, 何东风, 张凡, 刘乐园, 聂瑞娟, 王福仁, 王守证, 戴远东. 利用单通道高温超导磁梯度计获取心磁地图. 物理学报, doi: 10.7498/aps.51.224
    [15] 韩 冰, 陈赓华, 徐凤枝, 赵士平, 杨乾声. 高温超导台阶结YBCO dc-SQUID一阶平面梯度计. 物理学报, doi: 10.7498/aps.49.2051
    [16] 陈莺飞, S.ZAREMBINSKI. 阻尼型高温直流超导量子干涉器磁强计的设计. 物理学报, doi: 10.7498/aps.47.1369
    [17] 王晓辉, 金新, 姚希贤. 大涨落作用下损耗模式RF-SQUID磁通跃迁性质的研究. 物理学报, doi: 10.7498/aps.40.1689
    [18] 沐建林, 蔡诗东. 梯度磁场中静电波引起的粒子随机运动. 物理学报, doi: 10.7498/aps.38.1818
    [19] 张裕恒, 高怡平. 双桥结SQUID的V-H,V-t关系. 物理学报, doi: 10.7498/aps.35.561
    [20] 张裕恒, 李玉芝, 郑捷飞. 在一个磁通量子内dc Josephson电流的阶梯效应(Ⅰ)——双结SQUID. 物理学报, doi: 10.7498/aps.33.58
计量
  • 文章访问数:  94
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-08-25

/

返回文章
返回