-
SQUID作为一种超灵敏的磁通传感器,在生物磁探测、低场核磁共振、地球物理探矿等领域得到广泛应用。本文设计开发了一种用于脑磁(MEG)系统的集成SQUID芯片,并进行了批量封装测试。其中,每个芯片上集成了两个一阶平面梯度计和一个磁强计,采用亚微米约瑟夫森结制备技术,实现0.7 μm ×0.7 μm的亚微米结尺寸。SQUID与探测线圈采用Nb超导引线连接,集成到同一芯片上。我们对171个SQUID器件的测试结果显示,这些器件在磁场白噪声、I-V特性、V-Φ特性等方面表现优异。我们制备的SQUID器件工作电流集中在15~20μA区间,电压摆幅集中在80~120 μV之间。此外,超过80%的SQUID器件的磁场白噪声低于5 fT/√Hz,能够满足多通道SQUID脑磁系统的要求。The Superconducting Quantum Interference Device (SQUID) is one of the most sensitive flux sensors, which is critical in fields such as biomagnetism, low-field nuclear magnetic resonance (NMR), and geophysics. In this paper, we present a detailed investigation of the integrated magnetoencephalography (MEG) SQUID chip, which consists of a magnetometer and two gradiometers. The SQUID and pick-up coils are fabricated on different-sized wafers. The SQUID is fabricated on a commercial silicon substrate using micro- and nano-fabrication processes, including thin-film growth, iline stepper photolithography, and reactive ion etching (RIE). The sub-micron Josephson junction technology is employed to acquire a junction size of 0.7 μm × 0.7 μm, with a junction capacitance of only 0.05 pF. The pick-up coil is designed as a single-turn coil for a magnetometer and a planar first-order gradient coil for a gradient sensor. The MEG SQUID chips are tested in a well-shielded room with the heliumliquid temperature (4.2 K). Customized low-voltage noise readout circuit and source measure units are used to characterize the magnetic field white noise, current-voltage (IV) characteristics, and voltage modulation amplitude of 171 SQUID channels. The results show that 81% of the SQUID chips exhibit the lower magnetic field noise (< 5 fT/√Hz), and the high modulation amplitudes (in the range of 80 ~ 120 μV) with the low working currents of 15 ~ 20 μA, yielding a wafer yield rate of 78%. In summary, the SQUIDs show excellent performance in terms of magnetic field white noises, modulation amplitudes, and working currents, which are suitable for the very weak magnetic signal detection. One future work will focus on optimizing the SQUID chip fabrication process to minimize performance variations between chips on the same wafer.
-
Keywords:
- DC-SQUID /
- Magnetometer /
- Gradiometer /
- Magnetic field noise
-
[1] Ding H S, Chen G H, Zhang L H, Huang X G, Yang Q S 2006 J. Eng. Sci. 28 863 (in Chinese) [丁红胜, 陈赓华, 张利华, 黄旭光, 杨乾声 2006 工程科学 学报 28 863]
[2] LI H, Zhang M Y 2025 IEEE Trans.Appl.Supercond. 74 1
[3] Maslennikov Y V, Slobodchikov Y V, Krymov V A. Gulyaev Y V 2023 Pattern Recognit. Image Anal. 33 1402
[4] Sheng J W, Gao J H 2001 PHYSICS 50 463 (in Chinese) [盛经纬, 高家红 2021 物理 50 463]
[5] Lin J, Wang M C, Zhao J 2020 Journal of Harbin Institute of Technology (New Series). 27 101
[6] QI H H 2004 Ph. D. Dissertation (QingHuangdao: YanShan University) (in Chinese) [漆汉宏 2004 博士学位论文(秦皇岛:燕山大学]
[7] Persky E, Sochnikov I, Kalisky B 2022 Annu.Rev.Condens.Matter Phys. 13 385
[8] Sochnikov I,Davino D, Kalisky B 2020 Phys.Rev.Appl. 14 014020
[9] Granata C, Vettoliere A, Vaccarone R 2007 IEEE Trans.Appl. Supercond. 17 796
[10] Koelle D, Kleiner R, Ludwig F, Dantsker E, John C 1999 Rev.Mod. Phys.71 631
[11] ENPUKU K, MINOTANI T 2001 EICE T ELECTRON. 84 1
[12] Faley M I, Dammers J, Maslennikov Y V, Schneiderman J F, Winkler D, Koshelets VP, Shah N J,Dunin-Borkowski R E 2017 Supercond.Sci. Technol. 30 83001
[13] Bechstein S, Köhn C, Drung D, Jan-Hendrik S, Kieler O, Morosh V,Schurig T 2017 Supercond.Sci.Technol. 30 34007
[14] Carmine Granata, Vettoliere Antonio 2016 Phys.Rep. 614 1
[15] Cantor R, Hall J 2015 IEEE Trans.Appl.Supercond. 15 82
[16] Xiong W, Ying L L, Wang H, Zhang G F, Wang Z 2015 Proceedings of 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices, Shanghai China, November 20-23, 2015 p282
[17] Schmelz M, Zakosarenko V, Schönau T, Anders S, Kunert J, Meyer M, Meyer H-G, Stolz R 2017 Supercond. Sci. Technol. 30 74010
[18] Grönberg L, Kiviranta M, Vesterinen V, Lehtinen J, Simbierowicz S, Luomahaara J, Prunnila M, Hassel J 2017 Supercond. Sci. Technol. 30 125016
[19] Storm J H, Kieler O, Korber R. 2020 IEEE Trans. Appl. Supercond. 30 1
[20] Zhang G f, Zhang X, Wang Y l, Rong L L, Xie X M, Wang Z 2019 Physica C Supercond.Appl. 562 32
[21] Silver A H, Zimmerma J 1967 Phys Phys. Rev. 157 314
[22] Xie M, Schneiderman J F, Chukharkin M, Kalaboukhov A, Whitmarsh S, Lundqvist D, Winkler D 2015 IEEE Trans.Appl.Supercond. 25 6940248
[23] Ni Z 2024 Ph.D.Dissertation (shanghai: Shanghai Institute of Microsystem and Information Technology) (in Chinese) [倪志 2024 博士学位论文(上海:中国 科学院上海微系统与信息技术研究所]
[24] Drung D 2003 Supercond.Sci.Technol. 16 1320
[25] Enpuku K, Yoshida K, Kohjiro S 1986 J.Appl.Phys. 60 4218
[26] Wang Y L, Zhang S L, Zhang G F, Xu X F, Zhang C X, Wang Y, Xie X M 2020 Physica C Supercond.Appl. 575 1353685
[27] LI H, Zhang M Y 2024 Physica C Supercond.Appl. 625 1354575
计量
- 文章访问数: 94
- PDF下载量: 3
- 被引次数: 0