搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滚动时域估计的飞行器姿态估计及三轴磁强计在线校正

赵国荣 黄婧丽 苏艳琴 孙聪

引用本文:
Citation:

基于滚动时域估计的飞行器姿态估计及三轴磁强计在线校正

赵国荣, 黄婧丽, 苏艳琴, 孙聪

Attitude estimation and three-axis magnetometer on-line calibration based on moving horizon estimation

Zhao Guo-Rong, Huang Jing-Li, Su Yan-Qin, Sun Cong
PDF
导出引用
  • 针对飞行器姿态估计以及三轴磁强计在线校正问题, 提出了一种实时滚动时域估计算法. 首先, 为了解决在卡尔曼滤波框架下系统约束不能显式求解的问题, 设计了滚动时域估计滤波算法. 该算法将飞行器姿态估计问题转化为优化问题, 显式求解四元数归一化性质, 缩小搜索空间的同时提高了搜索效率和精度. 其次, 滤波时域窗内应用高斯-牛顿迭代法求解最优状态估计值, 满足了实时性要求. 最后, 在没有增加系统状态维数的情况下, 在线求解了三轴磁强计校正参数, 保证了磁强计量测值以矢量形式输入系统. 仿真结果表明, 由于合理地利用了历史信息, 该方法精度较高, 且对初始误差、系统误差均不敏感, 具有一定鲁棒性.
    According to the attitude estimation and three-axis magnetometer on-line calibration, a real time moving horizon estimation algorithm is presented in this paper. First, moving horizon estimation filter is designed since system constraints existing in most practical cases cannot be solved analytically in the framework of Kalman filter. Taking advantage of the optimal problem in dealing with constraints, the presented method converts the attitude estimation problem into an optimal one by which the quaternion normalization property can be solved analytically in smaller searching space with better efficiency and accuracy. Second, through a series of linearization of system equations, Gauss-Newton iterative method is applied in the horizon window composed of finite history information to obtain the best state estimation and meet the real time requirement at the same time. Once the newest best state estimation value is obtained, it will be sacked into the horizon window and the oldest one discarded. By this way, the filter is moving forward. Finally, based on the proposed method, the three-axis magnetometer parameter on-line calibration combined with attitude estimation is solved without adding any system state dimension, which can also make sure that the measurements with three-axis magnetometer are in the form of vector as its obvious benefits in the sense of ensuring information quantity. On considering the extreme environment such as great temperature gradient, mechanical pressure and complex electromagnetic fields, different from that of the off-line calibration, the calibration parameter is changed definitely. So the on-line calibration is necessary though neglected by most papers. Simulation results show that under the condition of small initial errors, the difference of accuracy among EKF, UKF and moving horizon estimation is small. But the computational burden of the last one is relatively large. The advantage of the described method is not so obvious in this case. But when the initial errors are large, the moving horizon estimation still can get the precise results no matter how great are the EKF (extended Kalman filter) and UKF (unscented Kalman filter) deviated from the true values. Thus the proposed method has its high accuracy and poor sensitivity of the initial and systematic errors along with fast convergence, all of which are vital in most actual environments.
      通信作者: 黄婧丽, huangjingli_hy@163.com
    • 基金项目: 国家自然科学基金(批准号: 61372027, 61473306)资助的课题.
      Corresponding author: Huang Jing-Li, huangjingli_hy@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61372027, 61473306).
    [1]

    Goldenberg F 2006 Proceedings of IEEE/ION PLANS San Diego, Canada, April 25-27, 2001 p684

    [2]

    BarI I Y, Harman R R 1997 Gu. Contr. Dyn. 20 208

    [3]

    Markley F 1989 Acta Astro. S. 37 41

    [4]

    Chen W D, Liu Y L, Zhu Q G, Chen Y 2013 Acta Phys. Sin. 17 105 (in Chinese) [陈卫东, 刘要龙, 朱奇光, 陈颖 2013 物理学报 17 105]

    [5]

    Sheng Z 2011 Acta Phys. Sin. 11 820 (in Chinese) [盛峥 2011 物理学报 11 820]

    [6]

    Zhao L 2012 Acta Phys. Sin. 10 231 (in Chinese) [赵龙 2012 物理学报 10 231]

    [7]

    Huang X Y, Wang J M 2014 IEEE Veh. Techn. 63 4221

    [8]

    Wu X D, Song Z H 2008 Chin. Phys. B 17 3241

    [9]

    Liu Y, Wang H, Hou C H 2013 IEEE Sign. Proc. 61 4988

    [10]

    Zu T Z, Jia S Z 2010 Chin. Phys. B 19 104601

    [11]

    Canale M, Fagiano L, Novara C 2014 IEEE Contr. Syst. Techn. 22 2048

    [12]

    Tor A J, Dan S, Roar N 2013 IEEE Contr. Syst. Techn. 21 2114

    [13]

    Rao C V, Rawlings J B, Mayne D Q 2003 IEEE Aut. Contr. 48 246

    [14]

    Jyh C J, Yung F T, Chiu T T 2012 Aero. Sci. Techn. 21 47

    [15]

    Inamori T, Nakasuka S, Sako N 2009 Proceedings of AIAA Guidance, Navigation, and Control Conference Chicago, USA, August 10-13, 2009 p1

    [16]

    John C S, James W C 2012 IEEE Gu. Contr. Dyn. 35 1080

    [17]

    John L C, Kok L L 2005 IEEE Gu. Contr. Dyn. 28 115

    [18]

    Vasconcelos J F, Elkaim G, Silvestre C 2011 IEEE Aero. El. Syst. 47 1293

    [19]

    Wu Z W, Yao M L, Ma H G 2013 IEEE Veh. Techn. 62 1084

    [20]

    Wertz J R 2012 Spacecraft attitude determination and control (Vol. 73) (Berlin: Springer Science & Business Media) p342-345

    [21]

    Marsden J E, West M 2001 Acta Num. 10 357

    [22]

    Zhao H Y 2007 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [赵海燕 2007 博士学位论文(长春: 吉林大学)]

    [23]

    Pang H, Li J, Chen D 2013 Measurement 46 1600

    [24]

    Alonso R, Shuster M D 2002 IEEE Astro. S. 50 477

    [25]

    Rao C V, Rawlings J B 2002 IEEE Aich. E. 48 97

  • [1]

    Goldenberg F 2006 Proceedings of IEEE/ION PLANS San Diego, Canada, April 25-27, 2001 p684

    [2]

    BarI I Y, Harman R R 1997 Gu. Contr. Dyn. 20 208

    [3]

    Markley F 1989 Acta Astro. S. 37 41

    [4]

    Chen W D, Liu Y L, Zhu Q G, Chen Y 2013 Acta Phys. Sin. 17 105 (in Chinese) [陈卫东, 刘要龙, 朱奇光, 陈颖 2013 物理学报 17 105]

    [5]

    Sheng Z 2011 Acta Phys. Sin. 11 820 (in Chinese) [盛峥 2011 物理学报 11 820]

    [6]

    Zhao L 2012 Acta Phys. Sin. 10 231 (in Chinese) [赵龙 2012 物理学报 10 231]

    [7]

    Huang X Y, Wang J M 2014 IEEE Veh. Techn. 63 4221

    [8]

    Wu X D, Song Z H 2008 Chin. Phys. B 17 3241

    [9]

    Liu Y, Wang H, Hou C H 2013 IEEE Sign. Proc. 61 4988

    [10]

    Zu T Z, Jia S Z 2010 Chin. Phys. B 19 104601

    [11]

    Canale M, Fagiano L, Novara C 2014 IEEE Contr. Syst. Techn. 22 2048

    [12]

    Tor A J, Dan S, Roar N 2013 IEEE Contr. Syst. Techn. 21 2114

    [13]

    Rao C V, Rawlings J B, Mayne D Q 2003 IEEE Aut. Contr. 48 246

    [14]

    Jyh C J, Yung F T, Chiu T T 2012 Aero. Sci. Techn. 21 47

    [15]

    Inamori T, Nakasuka S, Sako N 2009 Proceedings of AIAA Guidance, Navigation, and Control Conference Chicago, USA, August 10-13, 2009 p1

    [16]

    John C S, James W C 2012 IEEE Gu. Contr. Dyn. 35 1080

    [17]

    John L C, Kok L L 2005 IEEE Gu. Contr. Dyn. 28 115

    [18]

    Vasconcelos J F, Elkaim G, Silvestre C 2011 IEEE Aero. El. Syst. 47 1293

    [19]

    Wu Z W, Yao M L, Ma H G 2013 IEEE Veh. Techn. 62 1084

    [20]

    Wertz J R 2012 Spacecraft attitude determination and control (Vol. 73) (Berlin: Springer Science & Business Media) p342-345

    [21]

    Marsden J E, West M 2001 Acta Num. 10 357

    [22]

    Zhao H Y 2007 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese) [赵海燕 2007 博士学位论文(长春: 吉林大学)]

    [23]

    Pang H, Li J, Chen D 2013 Measurement 46 1600

    [24]

    Alonso R, Shuster M D 2002 IEEE Astro. S. 50 477

    [25]

    Rao C V, Rawlings J B 2002 IEEE Aich. E. 48 97

  • [1] 陈鑫洁, 张敬娜, 张慧滔, 夏迪梦, 徐文峰, 朱溢佞, 赵星. 基于CT扫描数据的X射线能谱估计方法. 物理学报, 2023, 72(11): 118701. doi: 10.7498/aps.72.20222307
    [2] 谭凡教, 苏金宇, 侯晴宇, 王佳轩, 王一惠. 基于时谱信号分析的在轨空间目标姿态感知. 物理学报, 2020, 69(21): 214201. doi: 10.7498/aps.69.20200098
    [3] 黄翔东, 刘明卓, 杨琳, 刘琨, 刘铁根. 单次空时域并行欠采样下的频率和到达角联合估计. 物理学报, 2017, 66(18): 188401. doi: 10.7498/aps.66.188401
    [4] 于靖, 卜雄洙, 牛杰, 王新征. 利用地球红外辐射的旋转飞行体姿态估计方法. 物理学报, 2016, 65(7): 079501. doi: 10.7498/aps.65.079501
    [5] 马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳. 基于主成分变换的图像稀疏度估计方法. 物理学报, 2013, 62(20): 204202. doi: 10.7498/aps.62.204202
    [6] 张太宁, 孟春宁, 刘润蓓, 常胜江. 基于暗瞳图像的人眼视线估计. 物理学报, 2013, 62(13): 134204. doi: 10.7498/aps.62.134204
    [7] 梁国龙, 马巍, 范展, 王逸林. 矢量声纳高速运动目标稳健高分辨方位估计. 物理学报, 2013, 62(14): 144302. doi: 10.7498/aps.62.144302
    [8] 林剑, 许力. 基于混合生物地理优化的混沌系统参数估计. 物理学报, 2013, 62(3): 030505. doi: 10.7498/aps.62.030505
    [9] 孙杰, 张晓娟, 方广有. 近地面三阵子天线估计电磁波到达角和极化参数. 物理学报, 2013, 62(19): 198402. doi: 10.7498/aps.62.198402
    [10] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计. 物理学报, 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [11] 龙文, 焦建军. 基于混合交叉进化算法的混沌系统参数估计. 物理学报, 2012, 61(11): 110507. doi: 10.7498/aps.61.110507
    [12] 李建勋, 柯熙政, 赵宝升. 一种脉冲星周期的时域估计新方法. 物理学报, 2012, 61(6): 069701. doi: 10.7498/aps.61.069701
    [13] 曹小群, 宋君强, 张卫民, 赵军, 张理论. 基于变分方法的混沌系统参数估计. 物理学报, 2011, 60(7): 070511. doi: 10.7498/aps.60.070511
    [14] 程荣军, 程玉民. 弹性力学的无单元Galerkin方法的误差估计. 物理学报, 2011, 60(7): 070206. doi: 10.7498/aps.60.070206
    [15] 宁小磊, 王宏力, 张琪, 陈连华. 区间衍生粒子滤波器. 物理学报, 2010, 59(7): 4426-4433. doi: 10.7498/aps.59.4426
    [16] 范永全, 张家树. 基于集员估计的混沌通信窄带干扰抑制技术. 物理学报, 2008, 57(5): 2714-2721. doi: 10.7498/aps.57.2714
    [17] 程荣军, 程玉民. 势问题的无单元Galerkin方法的误差估计. 物理学报, 2008, 57(10): 6037-6046. doi: 10.7498/aps.57.6037
    [18] 陈 争, 曾以成, 付志坚. 混沌背景中信号参数估计的新方法. 物理学报, 2008, 57(1): 46-50. doi: 10.7498/aps.57.46
    [19] 欧阳成. 电流变液系统流动的渐近估计. 物理学报, 2004, 53(6): 1900-1902. doi: 10.7498/aps.53.1900
    [20] 张力, 尚仁成, 徐四大. 原子激光共振电离效率的估计. 物理学报, 1992, 41(3): 379-386. doi: 10.7498/aps.41.379
计量
  • 文章访问数:  6937
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-12
  • 修回日期:  2015-06-22
  • 刊出日期:  2015-11-05

/

返回文章
返回