搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单次空时域并行欠采样下的频率和到达角联合估计

黄翔东 刘明卓 杨琳 刘琨 刘铁根

引用本文:
Citation:

单次空时域并行欠采样下的频率和到达角联合估计

黄翔东, 刘明卓, 杨琳, 刘琨, 刘铁根

Joint estimation of frequency and direction of arrival under the single-and-parallel spatial-temporal undersampling condition

Huang Xiang-Dong, Liu Ming-Zhuo, Yang Lin, Liu Kun, Liu Tie-Gen
PDF
导出引用
  • 随着应用频段的不断升高,空时域欠采样下的入射信号的频率和到达角的联合估计变得愈加困难.为解决此难题,本文提出了一种基于互素稀疏阵列的联合估计器.首先,结合互素稀疏阵列和闭式中国余数定理,建立了频率估计和到达角估计的理论模型;其次,将频谱校正理论和中国余数定理结合起来,导出了频率估计算法;再次,将相位差校正和中国余数定理结合起来,导出了到达角估计算法.该估计器不仅可降低现有估计器的硬件成本,而且仅需对单次并行采样的快拍做并行处理即可获得联合估计结果,无需对单阵元做多次采样,数据处理效率较高.仿真实验表明,该估计器具有较高的鲁棒性估计精度,因而在雷达、遥感等被动感知领域具有较广阔的应用前景.
    As the application frequency is increasingly high, it becomes difficult to design joint estimators for the frequencies and directions of arrival (DOAs) under the spatial-temporal undersampling condition. Specifically, on one hand, the temporal Nyquist theorem requires that the sampling rate be at least twice the highest frequency, which is unfordable for the existing analog-to-digital converters; on the other hand, the spatial Nyquist theorem also requires that each inter-element spacing be less than or equal to half the wavelength, which inevitably results in severe mutual coupling among sensors. To solve these intractable problems, in this paper, we propose a joint estimator based on a co-prime sparse array. Firstly, based on the combination of this sparse array and the closed-form robust Chinese remainder theorem (CRT), the theoretical model for the proposed frequency and DOA joint estimator is built up. Secondly, at each sensor, a frequency estimate for the source object can be calculated through implementing the closed-form robust CRT on two frequency remainders, which are generated by applying the Tsui spectrum correction to the discrete Fourier transform results of two receiver sequences. Then, averaging these estimates at all sensors yields the final frequency estimate. Lastly, on the basis of frequency estimation, the final DOA estimate can be calculated through implementing the closed-form robust CRT on all phase-difference remainders, which are also derived from the Tsui spectrum correction. It needs to be emphasized that the proposed joint estimator possesses two attractive merits. One merit is that due to the fact that the proposed array allows a high sparsity of element-spacings, both the hardware cost and the mutual coupling among sensors can be considerably reduced; the other merit is that compared with the existing estimators, the proposed joint estimator achieves high estimation precision even in the single-and-parallel undersampling condition (i.e., multi-time undersampling is bypassed in each sensor element, leading to a high data processing efficiency). In particular, this high accuracy attributes to two aspects:1) the Tsui spectum corrector incorporated in the proposed joint estimator can provide high-accuracy remainders for the CRT recovery; 2) the closed-form robust CRT itself is unbiased and thus the CRT recovery brings no extra system errors. Numerical results verify that the proposed joint estimator possesses both strong noise robustness and high estimation accuracy, which presents a vast potential application in several passive sensing fields such as radar and remote sensing.
      通信作者: 刘琨, beiyangkl@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61671012,61475114)和国家重大科学仪器设备开发专项(批准号:2013YQ030915)资助的课题.
      Corresponding author: Liu Kun, beiyangkl@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61671012, 61475114) and the Special Funds of the Major Scientific Instruments Equipment Development of China (Grant No. 2013YQ030915)
    [1]

    Xu L, Li J, Stoica P 2008 IEEE Trans. Aerosp. Electron Syst. 44 927

    [2]

    Rappaport T S 1996 Wireless Communications:Principles and Practice (New Jersey:Prentice Hall PTR Upper Saddle River) p43

    [3]

    Li Y, Seshadri N, Ariyavisitakul S 1999 IEEE J. Sel. Areas Commun. 17 461

    [4]

    Poisel R 2012 Electronic Warfare Target Location Methods (London:Artech House) p224

    [5]

    Gustafsson F 2003 International Conference on Acoustics, Speech, and Signal Processing Hong Kong, China April 6-10, 2003 p553

    [6]

    Zatman M, Strangeways H 1995 Antennas and Propagation Society International Symposium Newport Beach, USA, June 18-23, 1995 p431

    [7]

    Lemma A N, van der Veen A J, Deprettere E F 1998 International Conference on Acoustics, Speech, and Signal Processing Seattle, USA, May 15-19, 1998 p1957

    [8]

    Liang J, Zeng X, Ji B, Zhang J, Zhao F 2009 Digit Signal Process 19 596

    [9]

    Lin J D, Fang W H, Wang Y Y, Chen J T 2006 IEEE Trans. Signal Process 54 4529

    [10]

    Zoltowski M D, Mathews C P 1994 IEEE Trans. Signal Process 42 2781

    [11]

    Moffet A 1968 IEEE Trans. Antennas Propag. 16 172

    [12]

    Taylor H, Golomb S 1985 CSI Tech. Rep 5 1

    [13]

    Vaidyanathan P P, Pal P 2011 IEEE Trans. Signal Process 59 3592

    [14]

    Vaidyanathan P P, Pal P 2011 IEEE Trans. Signal Process 59 573

    [15]

    Pal P, Vaidyanathan P P 2011 Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop Sedona, USA, January 4-7, 2011 p289

    [16]

    Liu C L, Vaidyanathan P P 2015 IEEE Signal Process. Lett. 22 1438

    [17]

    Pal P, Vaidyanathan P P 2010 IEEE Trans. Signal Process 58 4167

    [18]

    Liu C L, Vaidyanathan P P 2016 IEEE Trans. Signal Process 64 3997

    [19]

    Liu C L, Vaidyanathan P P 2016 IEEE Trans. Signal Process 64 4203

    [20]

    Liang H, Zhang H 2012 J. Northwestern Polytechn. Univ. 28 409(in Chinese)[梁红, 张恒2012西北工业大学学报 28 409]

    [21]

    Wang W, Xia X G 2010 IEEE Trans. Signal Process 58 5655

    [22]

    Tsui J B 2004 Digital Techniques for Wideband Receivers (Raleigh:SciTech Publishing) p341

  • [1]

    Xu L, Li J, Stoica P 2008 IEEE Trans. Aerosp. Electron Syst. 44 927

    [2]

    Rappaport T S 1996 Wireless Communications:Principles and Practice (New Jersey:Prentice Hall PTR Upper Saddle River) p43

    [3]

    Li Y, Seshadri N, Ariyavisitakul S 1999 IEEE J. Sel. Areas Commun. 17 461

    [4]

    Poisel R 2012 Electronic Warfare Target Location Methods (London:Artech House) p224

    [5]

    Gustafsson F 2003 International Conference on Acoustics, Speech, and Signal Processing Hong Kong, China April 6-10, 2003 p553

    [6]

    Zatman M, Strangeways H 1995 Antennas and Propagation Society International Symposium Newport Beach, USA, June 18-23, 1995 p431

    [7]

    Lemma A N, van der Veen A J, Deprettere E F 1998 International Conference on Acoustics, Speech, and Signal Processing Seattle, USA, May 15-19, 1998 p1957

    [8]

    Liang J, Zeng X, Ji B, Zhang J, Zhao F 2009 Digit Signal Process 19 596

    [9]

    Lin J D, Fang W H, Wang Y Y, Chen J T 2006 IEEE Trans. Signal Process 54 4529

    [10]

    Zoltowski M D, Mathews C P 1994 IEEE Trans. Signal Process 42 2781

    [11]

    Moffet A 1968 IEEE Trans. Antennas Propag. 16 172

    [12]

    Taylor H, Golomb S 1985 CSI Tech. Rep 5 1

    [13]

    Vaidyanathan P P, Pal P 2011 IEEE Trans. Signal Process 59 3592

    [14]

    Vaidyanathan P P, Pal P 2011 IEEE Trans. Signal Process 59 573

    [15]

    Pal P, Vaidyanathan P P 2011 Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop Sedona, USA, January 4-7, 2011 p289

    [16]

    Liu C L, Vaidyanathan P P 2015 IEEE Signal Process. Lett. 22 1438

    [17]

    Pal P, Vaidyanathan P P 2010 IEEE Trans. Signal Process 58 4167

    [18]

    Liu C L, Vaidyanathan P P 2016 IEEE Trans. Signal Process 64 3997

    [19]

    Liu C L, Vaidyanathan P P 2016 IEEE Trans. Signal Process 64 4203

    [20]

    Liang H, Zhang H 2012 J. Northwestern Polytechn. Univ. 28 409(in Chinese)[梁红, 张恒2012西北工业大学学报 28 409]

    [21]

    Wang W, Xia X G 2010 IEEE Trans. Signal Process 58 5655

    [22]

    Tsui J B 2004 Digital Techniques for Wideband Receivers (Raleigh:SciTech Publishing) p341

  • [1] 马博文, 戴雯, 孟飞, 陶家宁, 武子铃, 石岩青, 方占军, 胡明列, 宋有建. 基于异步光学采样的电光频率梳时间抖动测量. 物理学报, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [2] 陈鑫洁, 张敬娜, 张慧滔, 夏迪梦, 徐文峰, 朱溢佞, 赵星. 基于CT扫描数据的X射线能谱估计方法. 物理学报, 2023, 72(11): 118701. doi: 10.7498/aps.72.20222307
    [3] 姜思仪, 付宁, 乔立岩, 彭喜元. 基于L型延迟阵列调制宽带转换器的信号载频和二维到达角联合估计. 物理学报, 2021, 70(8): 084303. doi: 10.7498/aps.70.20201312
    [4] 杨棣, 王元美, 李军刚. 贝叶斯频率估计中频率的先验分布对有色噪声作用的影响. 物理学报, 2018, 67(6): 060301. doi: 10.7498/aps.67.20171911
    [5] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析. 物理学报, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [6] 孙梅, 周士弘. 大深度接收时深海直达波区的复声强及声线到达角估计. 物理学报, 2016, 65(16): 164302. doi: 10.7498/aps.65.164302
    [7] 彭汉, 刘彬, 付松年, 张敏明, 刘德明. 高速线性光采样用被动锁模光纤激光器重复频率优化. 物理学报, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [8] 赵国荣, 黄婧丽, 苏艳琴, 孙聪. 基于滚动时域估计的飞行器姿态估计及三轴磁强计在线校正. 物理学报, 2015, 64(21): 210502. doi: 10.7498/aps.64.210502
    [9] 巴斌, 刘国春, 李韬, 林禹丞, 王瑜. 基于哈达玛积扩展子空间的到达时间和波达方向联合估计. 物理学报, 2015, 64(7): 078403. doi: 10.7498/aps.64.078403
    [10] 陈鹏, 孟晨, 孙连峰, 王成, 杨森. 基于指数再生窗Gabor框架的窄脉冲欠Nyquist采样与重构. 物理学报, 2015, 64(7): 070701. doi: 10.7498/aps.64.070701
    [11] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [12] 黄翔东, 孟天伟, 丁道贤, 王兆华. 前后向子分段相位差频率估计法. 物理学报, 2014, 63(21): 214304. doi: 10.7498/aps.63.214304
    [13] 黄翔东, 丁道贤, 南楠, 王兆华. 基于中国余数定理的欠采样下余弦信号的频率估计. 物理学报, 2014, 63(19): 198403. doi: 10.7498/aps.63.198403
    [14] 孙杰, 张晓娟, 方广有. 近地面三阵子天线估计电磁波到达角和极化参数. 物理学报, 2013, 62(19): 198402. doi: 10.7498/aps.62.198402
    [15] 曹小群, 宋君强, 张卫民, 赵军, 张理论. 基于变分方法的混沌系统参数估计. 物理学报, 2011, 60(7): 070511. doi: 10.7498/aps.60.070511
    [16] 范永全, 张家树. 基于集员估计的混沌通信窄带干扰抑制技术. 物理学报, 2008, 57(5): 2714-2721. doi: 10.7498/aps.57.2714
    [17] 陈 争, 曾以成, 付志坚. 混沌背景中信号参数估计的新方法. 物理学报, 2008, 57(1): 46-50. doi: 10.7498/aps.57.46
    [18] 程荣军, 程玉民. 势问题的无单元Galerkin方法的误差估计. 物理学报, 2008, 57(10): 6037-6046. doi: 10.7498/aps.57.6037
    [19] 欧阳成. 电流变液系统流动的渐近估计. 物理学报, 2004, 53(6): 1900-1902. doi: 10.7498/aps.53.1900
    [20] 张力, 尚仁成, 徐四大. 原子激光共振电离效率的估计. 物理学报, 1992, 41(3): 379-386. doi: 10.7498/aps.41.379
计量
  • 文章访问数:  5098
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-11
  • 修回日期:  2017-05-05
  • 刊出日期:  2017-09-05

/

返回文章
返回