搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中国余数定理的欠采样下余弦信号的频率估计

黄翔东 丁道贤 南楠 王兆华

引用本文:
Citation:

基于中国余数定理的欠采样下余弦信号的频率估计

黄翔东, 丁道贤, 南楠, 王兆华

Frequency estimation of undersampled sinusoidal signal based on chinese remainder theorem

Huang Xiang-Dong, Ding Dao-Xian, Nan Nan, Wang Zhao-Hua
PDF
导出引用
  • 基于中国余数定理的重构算法的信号频率估计是近年来信号处理、电磁学以及光学等领域的前沿问题,但目前这些研究仅限于对复指数信号做粗略频率估计. 因而,本文把基于中国余数定理的频率估计从复指数信号粗估计拓展到实余弦信号精细估计领域,其所提出的估计方案处理过程如下:1) 对高频余弦波形进行过零点检测,确定信号的相位信息;2) 对各路欠采样信号做快速傅里叶变换,并借助Candan估计器对各路谱峰值做频率校正以获取高精度余数估计,基于此算出频偏值以做相位校正;3)用提出的基于相位特征分类方法对校正得到的余数做筛选;4) 将筛选出的频率余数代入闭合形式的中国余数定理得到原信号频率的高精度估计. 此外,本文还推导出了频率估计方差的理论表达式. 数据模拟实验验证了该表达式的正确性,实验结果还反映了本文提出的方案具有高精度和高抗噪性能.
    Frequency estimation based on the reconstruction algorithm of the Chinese remainder theorem(CRT) is one of the frontier focuses in the fields of signal processing, electromagnetism, and optics etc. Howerver, the existing studies can only realize a rough frequency estimation of complex exponential signals. Hence this paper generalizes the CRT-based frequency reconstruction from a rough frequency estimation of complex exponential signals to the accurate frequency estimation of sinusoidal signals. The procedure of the proposed estimation scheme is as follows: (1) Detect zero crossing point on the original high-frequency sinusoidal waveform so as to determine the ideal phase information; (2) implement fast Fourier transform(FFT) to each path's undersampled signal, and then use Candan estimator to correct the frequencies at the peak FFT spectral bins so that the frequency biases can be extracted to realize phase correction; (3) use the proposed classification method based on phase features to screen the corrected remainders; (4)substitute the filtered frequency remainders into the closed-form robust Chinese remainder theorem to obtain the high-accuracy frequency estimation of the original signal. Additionally, this paper also deduces the theoretic expressions of the frequency estimation variance, which is also verified through numerical simulation. And the experimental results also reflect that the proposed scheme possesses high precision and high robustness to noise.
    • 基金项目: 天津市应用基础及前沿技术研究计划重点项目(批准号:10JCZDJC16100)和国家自然科学基金(批准号:61271322)资助的课题.
    • Funds: Project supported by the Tianjin Key Project of Application Foundation and Frontier Technologies Plan (Grant No. 10JCZDJC16100), and the National Natural Science Foundation of China (Grant No. 61271322).
    [1]

    Xia X G, Liu K J 2005 IEEE Signal Processing Letters 12 768

    [2]

    Chen Zh, Zeng Y Ch, Fu Zh J 2008 Acta Phys. Sin. 57 46(in Chinese) [陈争, 曾以成, 付志坚 2008 物理学报 57 46]

    [3]

    Cong Ch, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301(in Chinese) [丛超, 李秀坤, 宋扬. 2014 物理学报 63 064301]

    [4]

    Xia X G, Wang G Y 2007 IEEE Signal Processing Letters 14 247

    [5]

    Li X W, Liang H, Xia X G 2009 IEEE Trans. Signal Process 57 4314

    [6]

    Li X W, Xia X G 2008 IEEE Signal Processing Letters 15 665

    [7]

    Qing H Y, Zhang Y N, Zhou Ch, Zhao Zh Y, Chen G 2014 Acta Phys. Sin. 63 094301(in Chinese) [青海银, 张援农, 周晨, 赵正予, 陈罡. 2014 物理学报 63 094301]

    [8]

    Cheng F, Wang Y Z 2012 Chin. Phys. B. 21 070309

    [9]

    Bai Y F, Zhai Sh Q, Gao J R, Zhang J X 2011 Chin. Phys. B 20 034207

    [10]

    Mcclellen J H, Rader C M 1979 Number Theory in Digital Signal Processing (Englewood Cliffs, NJ: Prentice-Hall)

    [11]

    Ding C, Pei D, Salomaa A 1996 Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography (Singapore: World Scientific Publishing Co. Pte. Ltd.) p24

    [12]

    Goldreich O, Ron D, Sudan M 2000 IEEE Trans. Inf. Theory 46 1330

    [13]

    Guruswami V, Sahai A, Sudan M 2000 Proceedings 41st Annual Symposium on Foundations of Computer Science Redondo Beach, CA, Nov 12-14, 2000 p159

    [14]

    Li G, Meng H D, Xia X G, Peng Y N 2008 Sensors 8 1343

    [15]

    Li X W, Xia X G 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) Dallas, TX, March 14-19, 2010 p2810

    [16]

    Wang W J, Xia X G 2010 IEEE Transactions on Signal Processing 58 5655

    [17]

    Candan C 2011 IEEE Signal Processing Letters 18 351

    [18]

    Candan C 2013 IEEE Signal Processing Letters 20 913

    [19]

    Quinn B G 1994 IEEE Transactions on Signal Processing 42 1264

    [20]

    Macleod M D 1998 IEEE Transactions on Signal Processing 46 141

    [21]

    Jacobsen E, Kootsookos P 2007 IEEE Signal Process. Mag 24 123

  • [1]

    Xia X G, Liu K J 2005 IEEE Signal Processing Letters 12 768

    [2]

    Chen Zh, Zeng Y Ch, Fu Zh J 2008 Acta Phys. Sin. 57 46(in Chinese) [陈争, 曾以成, 付志坚 2008 物理学报 57 46]

    [3]

    Cong Ch, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301(in Chinese) [丛超, 李秀坤, 宋扬. 2014 物理学报 63 064301]

    [4]

    Xia X G, Wang G Y 2007 IEEE Signal Processing Letters 14 247

    [5]

    Li X W, Liang H, Xia X G 2009 IEEE Trans. Signal Process 57 4314

    [6]

    Li X W, Xia X G 2008 IEEE Signal Processing Letters 15 665

    [7]

    Qing H Y, Zhang Y N, Zhou Ch, Zhao Zh Y, Chen G 2014 Acta Phys. Sin. 63 094301(in Chinese) [青海银, 张援农, 周晨, 赵正予, 陈罡. 2014 物理学报 63 094301]

    [8]

    Cheng F, Wang Y Z 2012 Chin. Phys. B. 21 070309

    [9]

    Bai Y F, Zhai Sh Q, Gao J R, Zhang J X 2011 Chin. Phys. B 20 034207

    [10]

    Mcclellen J H, Rader C M 1979 Number Theory in Digital Signal Processing (Englewood Cliffs, NJ: Prentice-Hall)

    [11]

    Ding C, Pei D, Salomaa A 1996 Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography (Singapore: World Scientific Publishing Co. Pte. Ltd.) p24

    [12]

    Goldreich O, Ron D, Sudan M 2000 IEEE Trans. Inf. Theory 46 1330

    [13]

    Guruswami V, Sahai A, Sudan M 2000 Proceedings 41st Annual Symposium on Foundations of Computer Science Redondo Beach, CA, Nov 12-14, 2000 p159

    [14]

    Li G, Meng H D, Xia X G, Peng Y N 2008 Sensors 8 1343

    [15]

    Li X W, Xia X G 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP) Dallas, TX, March 14-19, 2010 p2810

    [16]

    Wang W J, Xia X G 2010 IEEE Transactions on Signal Processing 58 5655

    [17]

    Candan C 2011 IEEE Signal Processing Letters 18 351

    [18]

    Candan C 2013 IEEE Signal Processing Letters 20 913

    [19]

    Quinn B G 1994 IEEE Transactions on Signal Processing 42 1264

    [20]

    Macleod M D 1998 IEEE Transactions on Signal Processing 46 141

    [21]

    Jacobsen E, Kootsookos P 2007 IEEE Signal Process. Mag 24 123

  • [1] 马博文, 戴雯, 孟飞, 陶家宁, 武子铃, 石岩青, 方占军, 胡明列, 宋有建. 基于异步光学采样的电光频率梳时间抖动测量. 物理学报, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [2] 林开东, 林晓倩, 林绪波. 靶向PD-L1蛋白的计算机辅助药物筛选. 物理学报, 2023, 72(24): 240501. doi: 10.7498/aps.72.20231068
    [3] 崔岸婧, 李道京, 吴疆, 周凯, 高敬涵. 频域稀疏采样和激光成像方法. 物理学报, 2022, 71(5): 058705. doi: 10.7498/aps.71.20211408
    [4] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选. 物理学报, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [5] 王金舵, 余锦, 貊泽强, 何建国, 代守军, 孟晶晶, 王晓东, 刘洋. 连续波腔衰荡光谱技术中模式筛选的数值方法. 物理学报, 2019, 68(24): 244201. doi: 10.7498/aps.68.20190844
    [6] 杨棣, 王元美, 李军刚. 贝叶斯频率估计中频率的先验分布对有色噪声作用的影响. 物理学报, 2018, 67(6): 060301. doi: 10.7498/aps.67.20171911
    [7] 魏浩, 孙凤举, 呼义翔, 邱爱慈. 欠匹配型磁绝缘感应电压叠加器次级阻抗优化方法. 物理学报, 2017, 66(20): 208401. doi: 10.7498/aps.66.208401
    [8] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析. 物理学报, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [9] 黄翔东, 刘明卓, 杨琳, 刘琨, 刘铁根. 单次空时域并行欠采样下的频率和到达角联合估计. 物理学报, 2017, 66(18): 188401. doi: 10.7498/aps.66.188401
    [10] 冷雪冬, 巴斌, 逯志宇, 王大鸣. 基于回溯筛选的稀疏重构时延估计算法. 物理学报, 2016, 65(21): 210701. doi: 10.7498/aps.65.210701
    [11] 彭汉, 刘彬, 付松年, 张敏明, 刘德明. 高速线性光采样用被动锁模光纤激光器重复频率优化. 物理学报, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [12] 陈鹏, 孟晨, 孙连峰, 王成, 杨森. 基于指数再生窗Gabor框架的窄脉冲欠Nyquist采样与重构. 物理学报, 2015, 64(7): 070701. doi: 10.7498/aps.64.070701
    [13] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [14] 黄翔东, 孟天伟, 丁道贤, 王兆华. 前后向子分段相位差频率估计法. 物理学报, 2014, 63(21): 214304. doi: 10.7498/aps.63.214304
    [15] 林丽烽, 周兴旺, 马洪. 分数阶双头分子马达的欠扩散输运现象. 物理学报, 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [16] 张强, 陈鑫, 何立明, 荣康. 矩形喷口欠膨胀超声速射流对撞的实验研究. 物理学报, 2013, 62(8): 084706. doi: 10.7498/aps.62.084706
    [17] 赵宏伟, 孟豪, 张凌峰, 查国桥, 周世平. 欠掺杂高温超导体中的涡旋电荷结构相变. 物理学报, 2009, 58(6): 4189-4193. doi: 10.7498/aps.58.4189
    [18] 金辉宇, 奚宏生. Lorenz系统族采样同步研究. 物理学报, 2007, 56(5): 2488-2492. doi: 10.7498/aps.56.2488
    [19] 降雨强, 郭红莲, 刘春香, 李兆霖, 程丙英, 张道中, 贾锁堂. 低频响及低采样频率下用布朗运动分析法测量光阱刚度. 物理学报, 2004, 53(6): 1721-1726. doi: 10.7498/aps.53.1721
    [20] 曾贵华, 诸鸿文, 徐至展. 欠稠密等离子体中诱发的偶次相对论谐波. 物理学报, 2001, 50(10): 1946-1949. doi: 10.7498/aps.50.1946
计量
  • 文章访问数:  5932
  • PDF下载量:  434
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-25
  • 修回日期:  2014-05-22
  • 刊出日期:  2014-10-05

/

返回文章
返回