-
在不同喷口间距和射流压力下开展了矩形喷口欠膨胀超声速射流对撞实验并与自由射流进行了对比. 实验表明:超声速射流对撞的辐射噪声中存在四种不同的啸音模式, 且随喷口距离和射流压力的变化在不同模式间切换. 在射流压力大于0.5 MPa且喷口间距小于50 mm时, 射流对撞面在两个喷口外形成两道正激波之间, 啸音基频维持在3 kHz左右. 随喷口间距的增大或射流压力的降低, 射流对撞面在一侧喷口外的弓形激波与另一侧喷口外的正激波之间. 对撞面也有可能出现在两个弓形激波之间, 对应的啸音基频约为9 kHz, 但容易受扰动而回到喷口一侧或是在喷口之间大幅度振荡. 当射流压力小于0.36 MPa且喷口间距大于70 mm后, 对撞面在两个喷口之间大幅度振荡, 产生基频在1 kHz左右并随射流压力的降低和喷口间距的增大而降低的啸音.Rectangular under-expanded supersonic jet collision experiment is carried out under different nozzle distances and jet pressures and compared with that in the case of free jet. Experiments indicate that there are four screech tone modes of supersonic jet collision, switched from one mode to another depending on the nozzle distance and jet pressure. Two normal shock waves are present between nozzles as jet pressure is more than 0.5 MPa and nozzle distance is less than 50 mm, radiating a stable screech tone with a frequency of about 3 kHz. With nozzle distance increasing or jet pressure decreasing, a bow shock is present at one nozzle exit and a normal shock wave appears at the other exit with the collision surface oscillating between them. Collision surface might be kept balanced in the centre of two nozzles with a 9 kHz frequency screech tone, however, it is vulnerable to disturbance and would return to the equilibrium position near nozzle exit or oscillate between nozzles with large amplitude. When jet pressure is less than 0.36 MPa and nozzle distance greater than 70 mm, the collision surface substantially oscillates between the nozzles, radiating a screech tone with a frequency of about 1 kHz which decreases with jet pressure decreasing and nozzle distance increasing.
-
Keywords:
- supersonic jets /
- screech tone /
- jets collision /
- shock wave
[1] Tam C K W 1998 Theoret. Comput. Fluid Dyn. 10 393
[2] He F, Yang J L, Shen M Y 2002 Acta Phys. Sin. 51 1918 (in Chinese) [何枫, 杨京龙, 沈孟育 2002 物理学报 51 1918]
[3] Tam C K W 1995 Annu. Rev. Fluid Mech. 27 17
[4] Powell A 1953 Proc. Phys. Soc. London 66 1039
[5] Levin V A, Nechaev J N, Tarasov A I 2001 High-Speed Deflagration and Detonation (Moscow:ELEX-KM) p223
[6] Jackson S I, Shepherd J E 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11-14, 2004 p3919
[7] Li H P 2010 Ph. D. Dissertation (Xi'an:Aire Fore Engineering University) (in Chinese) [李海鹏 2010 博士学位论文(西安:空军工程大学)]
[8] Lee J H, Knystautas R, Feriman A 1984 Combustion Flame 56 227
[9] Zhang Q, He L M, Chen X, Rong K 2012 J. Propulsion Technol. 33 499 (in Chinese) [张强, 何立明, 陈鑫, 荣康 2012 推进技术 33 499]
[10] Berland J, Bogey C, Bailly C 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, UN, May 8-10, 2006 p2496
[11] Panda J, Raman G, Zaman K B M Q 2004 NASA/TM 2004-212481
[12] Shen Z G, Ma S L, Lian Q X, Xing Y S, Liu C H 1988 Powder Science and Technol. 4 12 (in Chinese) [沈志刚, 麻树林, 连淇祥, 邢玉山, 刘承晖1998 粉体技术 4 12]
[13] He F, Xie J S, Yao C H 2002 J. Propulsion Technol. 29 98 (in Chinese) [何枫, 谢俊石, 姚朝晖 2002 推进技术 29 98]
[14] Cui X G, Yao C H 2008 J. Propulsion Technol. 29 98 (in Chinese) [崔新光, 姚朝晖 2008 推进技术 29 98]
[15] He F, Hao P F, Zhang X W 2003 Acta Acustica 28 182 (in Chinese) [何枫, 郝鹏飞, 张锡文 2003 声学学报 28 182]
-
[1] Tam C K W 1998 Theoret. Comput. Fluid Dyn. 10 393
[2] He F, Yang J L, Shen M Y 2002 Acta Phys. Sin. 51 1918 (in Chinese) [何枫, 杨京龙, 沈孟育 2002 物理学报 51 1918]
[3] Tam C K W 1995 Annu. Rev. Fluid Mech. 27 17
[4] Powell A 1953 Proc. Phys. Soc. London 66 1039
[5] Levin V A, Nechaev J N, Tarasov A I 2001 High-Speed Deflagration and Detonation (Moscow:ELEX-KM) p223
[6] Jackson S I, Shepherd J E 2004 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Fort Lauderdale, USA, July 11-14, 2004 p3919
[7] Li H P 2010 Ph. D. Dissertation (Xi'an:Aire Fore Engineering University) (in Chinese) [李海鹏 2010 博士学位论文(西安:空军工程大学)]
[8] Lee J H, Knystautas R, Feriman A 1984 Combustion Flame 56 227
[9] Zhang Q, He L M, Chen X, Rong K 2012 J. Propulsion Technol. 33 499 (in Chinese) [张强, 何立明, 陈鑫, 荣康 2012 推进技术 33 499]
[10] Berland J, Bogey C, Bailly C 2006 12th AIAA/CEAS Aeroacoustics Conference Cambridge, UN, May 8-10, 2006 p2496
[11] Panda J, Raman G, Zaman K B M Q 2004 NASA/TM 2004-212481
[12] Shen Z G, Ma S L, Lian Q X, Xing Y S, Liu C H 1988 Powder Science and Technol. 4 12 (in Chinese) [沈志刚, 麻树林, 连淇祥, 邢玉山, 刘承晖1998 粉体技术 4 12]
[13] He F, Xie J S, Yao C H 2002 J. Propulsion Technol. 29 98 (in Chinese) [何枫, 谢俊石, 姚朝晖 2002 推进技术 29 98]
[14] Cui X G, Yao C H 2008 J. Propulsion Technol. 29 98 (in Chinese) [崔新光, 姚朝晖 2008 推进技术 29 98]
[15] He F, Hao P F, Zhang X W 2003 Acta Acustica 28 182 (in Chinese) [何枫, 郝鹏飞, 张锡文 2003 声学学报 28 182]
计量
- 文章访问数: 6654
- PDF下载量: 734
- 被引次数: 0