搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水流冲击超声速气体射流实验研究

张孝石 许昊 王聪 陆宏志 赵静

引用本文:
Citation:

水流冲击超声速气体射流实验研究

张孝石, 许昊, 王聪, 陆宏志, 赵静

Experimental study on underwater supersonic gas jets in water flow

Zhang Xiao-Shi, Xu Hao, Wang Cong, Lu Hong-Zhi, Zhao Jing
PDF
导出引用
  • 通过水洞实验对有水流速度影响的水下超声速气体射流进行实验研究,通过高速摄像系统记录射流形态演变过程,采用动态测力系统测量射流演变过程中射流周围环境压力的脉动特征.对剪切层涡旋结构进行分析,得到水流冲击射流的剪切涡流动形态演化和压力脉动特征.实验结果表明,射流主体形态的非定常运动依赖于水流速度,无水流速度时,射流主体受到重浮力影响向上弯曲较大,并且可以捕捉到射流的振荡诱导喷管口平面处主频为200 Hz的压力脉动,当存在水流速度时,射流主体向下游发展过程中的偏斜程度较小,射流与水流相互作用形成剪切涡,在水流作用下射流主体向下游发展过程中卷入射流剪切层,与射流主体掺混形成较大尺度的涡结构,喷管口平面处主频消失.
    The objective of this study is to investigate the flow structure of underwater supersonic gas jets in water flow. Supersonic gas jets submerged in a liquid flow field is experimentally studied in a water tunnel. In the experiments, a high speed camera system is used to observe the evolution of the gas jet bubble, and a dynamic pressure measurement system is used to measure the pressure fluctuation under different flow velocities simultaneously. We seek to study the mechanism of the vortex structure and the pressure fluctuation phenomenon during the gas jet evolution. The obtained results conclude that the main body formation and the pressure fluctuation of the gas jets depend heavily on the ambient flow speed. The instantaneous patterns of gas jets remarkably go upward due to the gravity effect in the still water. A shear vortex will be formed by jet-flow interaction when the ambient fluid flows. Larger vortexes are formed when the main body of the jet evolves downstream and mixes with the jet shear layer. The evolution pattern and pressure fluctuation characteristics of the gas-liquid interface are educed through a detailed analysis of the shear layer vortex structure. Backward reflection of pressure fluctuation is formed accompanying the jet bulging, necking, and back-attack. Consequently, the pressure fluctuation is transferred to the fluid at the nozzle surface and the test section. The pressure measurement system is used to confirm the pressure fluctuation phenomenon. Two measuring positions are set, i.e., pressure transducers are embedded at the nozzle surface and the test section. The pressure fluctuation with magnitude of 10 kPa is measured by the nozzle surface transducer in still water. The pressure fluctuation induced by the gas jets near the nozzle exit disappears simultaneously when the ambient fluid flows. However, the amplitude of pressure fluctuation decreases at the nozzle surface but increases at the test section with the increasing flow velocity. Power spectrum analysis is carried out and shows that the mechanical energy of the water tunnel gas jets is mainly distributed in the frequency band of 0-700 Hz. A jet induced large pressure fluctuation with a dominant frequency about 200 Hz can be captured near the nozzle surface in still water. With increasing water velocity, the dominant frequency of the unsteady pressure fluctuation decreases significantly at the nozzle surface. Conversely, the flow velocity leads to an increase in the spectral intensity of the pressure at the test section.
      通信作者: 王聪, alanwang@hit.edu.cn
    • 基金项目: 国家国际科技合作专项(批准号:2015DFA70840)资助的课题.
      Corresponding author: Wang Cong, alanwang@hit.edu.cn
    • Funds: Project supported by the International Science and Technology Cooperation Program of China (Grant No. 2015DFA70840).
    [1]

    Aoki T, Masuda S, Hatono A, Taga M 1982Injection Phenomena in Extraction and Refining(England:Newcastle upon Tyne) p21

    [2]

    Taylor I F, Wright J K, Philp D K 1988Can.Metall.Quart. 27 293

    [3]

    Ozawa Y, Mori K 1983Transactions of the Iron and Steel Institute of Japan 23 764

    [4]

    Yang Q, Gustavsson H 1990Scand.J.Metall. 19 127

    [5]

    Yang Q, Gustavsson H 1992Scand.J.Metall. 21 15

    [6]

    Wei J H, Ma J C, Fan Y Y, Yu N W, Yang S L, Xiang S H 1999ISIJ Int. 39 779

    [7]

    Loth E, Faeth G M 1989Int.J.Multiphas.Flow 15 589

    [8]

    Surin V, Evchenko V, Rubin V 1983J.Eng.Phys. 45 1091

    [9]

    Weiland C, Yagla J, Vlachos P 2008CD-ROM Proc.XXⅡ ICTAM Adelaide, Australia, August 2008 p25

    [10]

    Dai Z, Wang B, Qi L, Shi H 2006Acta Mech.Sinica 22 443

    [11]

    Shi H, Wang B, Dai Z 2010Science China Physics, Mechanics and Astronomy 53 527

    [12]

    Wang C, Wang J F, Shi H H 2014CIESC Journal 65 4293(in Chinese)[王超, 汪剑锋, 施红辉2014化工学报65 4293]

    [13]

    Shi H H, Guo Q, Wang C, Wang X G, Zhang L T, Dong R L, Jia H X 2010Chinese Journal of Theoretical and Applied Mechanics 42 1206(in Chinese)[施红辉, 郭强, 王超, 王晓刚, 章利特, 董若凌, 贾会霞2010力学学报42 1206]

    [14]

    Shi H H, Wang B Y, Dai Z Q 2010Scientia Sinica (Physica, Mechanica Astronomica) 40 92(in Chinese)[施红辉, 王柏懿, 戴振卿2010中国科学:物理学力学天文学40 92]

    [15]

    Drazin P 2004Hydrodynamic Stability(Cambridge:Cambridge University Press) p288

    [16]

    Chen K, Richter H 1997Int.J.Multiphas.Flow 23 699

    [17]

    Haven B, Kurosaka M 1997J.Fluid Mech. 352 27

  • [1]

    Aoki T, Masuda S, Hatono A, Taga M 1982Injection Phenomena in Extraction and Refining(England:Newcastle upon Tyne) p21

    [2]

    Taylor I F, Wright J K, Philp D K 1988Can.Metall.Quart. 27 293

    [3]

    Ozawa Y, Mori K 1983Transactions of the Iron and Steel Institute of Japan 23 764

    [4]

    Yang Q, Gustavsson H 1990Scand.J.Metall. 19 127

    [5]

    Yang Q, Gustavsson H 1992Scand.J.Metall. 21 15

    [6]

    Wei J H, Ma J C, Fan Y Y, Yu N W, Yang S L, Xiang S H 1999ISIJ Int. 39 779

    [7]

    Loth E, Faeth G M 1989Int.J.Multiphas.Flow 15 589

    [8]

    Surin V, Evchenko V, Rubin V 1983J.Eng.Phys. 45 1091

    [9]

    Weiland C, Yagla J, Vlachos P 2008CD-ROM Proc.XXⅡ ICTAM Adelaide, Australia, August 2008 p25

    [10]

    Dai Z, Wang B, Qi L, Shi H 2006Acta Mech.Sinica 22 443

    [11]

    Shi H, Wang B, Dai Z 2010Science China Physics, Mechanics and Astronomy 53 527

    [12]

    Wang C, Wang J F, Shi H H 2014CIESC Journal 65 4293(in Chinese)[王超, 汪剑锋, 施红辉2014化工学报65 4293]

    [13]

    Shi H H, Guo Q, Wang C, Wang X G, Zhang L T, Dong R L, Jia H X 2010Chinese Journal of Theoretical and Applied Mechanics 42 1206(in Chinese)[施红辉, 郭强, 王超, 王晓刚, 章利特, 董若凌, 贾会霞2010力学学报42 1206]

    [14]

    Shi H H, Wang B Y, Dai Z Q 2010Scientia Sinica (Physica, Mechanica Astronomica) 40 92(in Chinese)[施红辉, 王柏懿, 戴振卿2010中国科学:物理学力学天文学40 92]

    [15]

    Drazin P 2004Hydrodynamic Stability(Cambridge:Cambridge University Press) p288

    [16]

    Chen K, Richter H 1997Int.J.Multiphas.Flow 23 699

    [17]

    Haven B, Kurosaka M 1997J.Fluid Mech. 352 27

  • [1] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 物理学报, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [2] 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性. 物理学报, 2020, 69(21): 214401. doi: 10.7498/aps.69.20201000
    [3] 张冬冬, 谭建国, 姚霄. 入流激励下可压缩剪切层中Kelvin-Helmholtz涡的响应特性. 物理学报, 2020, 69(2): 024701. doi: 10.7498/aps.69.20190681
    [4] 杨俊升, 黄多辉. 环状聚合物及其对应的线性链熔体在启动剪切场下流变特性的分子动力学模拟研究. 物理学报, 2019, 68(13): 138301. doi: 10.7498/aps.68.20190403
    [5] 郑麟, 莫松平, 李玉秀, 陈颖, 徐进良. 薄层剪切二元颗粒分离过程动力学特性分析. 物理学报, 2019, 68(16): 164703. doi: 10.7498/aps.68.20190322
    [6] 李建欣, 柏财勋, 刘勤, 沈燕, 徐文辉, 许逸轩. 新型干涉高光谱成像系统的光束剪切特性分析. 物理学报, 2017, 66(19): 190704. doi: 10.7498/aps.66.190704
    [7] 吴里银, 王振国, 李清廉, 李春. 超声速气流中液体横向射流的非定常特性与振荡边界模型. 物理学报, 2016, 65(9): 094701. doi: 10.7498/aps.65.094701
    [8] 张程宾, 于程, 刘向东, 金瓯, 陈永平. 剪切流场中双重乳液稳态形变. 物理学报, 2016, 65(20): 204704. doi: 10.7498/aps.65.204704
    [9] 向飞, 吴平, 曾凡光, 王淦平, 李春霞, 鞠炳全. 强流碳纳米管阴极快脉冲重频发射特性. 物理学报, 2015, 64(16): 164103. doi: 10.7498/aps.64.164103
    [10] 邓真渝, 章林溪. 流场环境下复杂囊泡的动力学行为. 物理学报, 2015, 64(16): 168201. doi: 10.7498/aps.64.168201
    [11] 唐云龙, 李世鹏, 刘筑, 隋欣, 王宁飞. 水下火箭水平射流初期特征研究. 物理学报, 2015, 64(23): 234702. doi: 10.7498/aps.64.234702
    [12] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟. 物理学报, 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [13] 李洪伟, 周云龙, 王世勇, 孙斌. 小通道氮气-水两相流三谱切片波动特性及其流型表征 . 物理学报, 2013, 62(14): 140505. doi: 10.7498/aps.62.140505
    [14] 陈蓥, 付世晓, 许玉旺, 周青, 范迪夏. 均匀流中近壁面垂直流向振荡圆柱水动力特性研究. 物理学报, 2013, 62(6): 064701. doi: 10.7498/aps.62.064701
    [15] 金叶青, 姚熊亮, 庞福振, 张阿漫. 均匀流中剪切变形加筋层合板声与振动特性研究. 物理学报, 2013, 62(13): 134306. doi: 10.7498/aps.62.134306
    [16] 张松鹏, 张向军, 田煜, 孟永钢. 采用液晶涂层测量介质流与壁面间剪切应力的定量模型与试验研究. 物理学报, 2012, 61(23): 234702. doi: 10.7498/aps.61.234702
    [17] 王晓东, 欧阳洁, 苏进. 非均匀剪切流场中液晶聚合物微观结构的无网格模拟. 物理学报, 2010, 59(9): 6369-6376. doi: 10.7498/aps.59.6369
    [18] 刘 崇, 葛剑虹, 陈 军. 外腔反馈对半导体激光器振荡特性的影响. 物理学报, 2006, 55(10): 5211-5215. doi: 10.7498/aps.55.5211
    [19] 何枫, 杨京龙, 沈孟育. 激波和剪切层相互作用下的超音速射流. 物理学报, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [20] 韩申生, 朱士尧. KT-5B托卡马克等离子体中剪切Alfven波的激发特性. 物理学报, 1991, 40(8): 1290-1297. doi: 10.7498/aps.40.1290
计量
  • 文章访问数:  3571
  • PDF下载量:  267
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-11
  • 修回日期:  2016-12-03
  • 刊出日期:  2017-03-05

水流冲击超声速气体射流实验研究

  • 1. 哈尔滨工业大学航天学院, 哈尔滨 150001;
  • 2. 中国运载火箭技术研究院研究发展中心, 北京 100076
  • 通信作者: 王聪, alanwang@hit.edu.cn
    基金项目: 国家国际科技合作专项(批准号:2015DFA70840)资助的课题.

摘要: 通过水洞实验对有水流速度影响的水下超声速气体射流进行实验研究,通过高速摄像系统记录射流形态演变过程,采用动态测力系统测量射流演变过程中射流周围环境压力的脉动特征.对剪切层涡旋结构进行分析,得到水流冲击射流的剪切涡流动形态演化和压力脉动特征.实验结果表明,射流主体形态的非定常运动依赖于水流速度,无水流速度时,射流主体受到重浮力影响向上弯曲较大,并且可以捕捉到射流的振荡诱导喷管口平面处主频为200 Hz的压力脉动,当存在水流速度时,射流主体向下游发展过程中的偏斜程度较小,射流与水流相互作用形成剪切涡,在水流作用下射流主体向下游发展过程中卷入射流剪切层,与射流主体掺混形成较大尺度的涡结构,喷管口平面处主频消失.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回