搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

剪切流场中双重乳液稳态形变

张程宾 于程 刘向东 金瓯 陈永平

引用本文:
Citation:

剪切流场中双重乳液稳态形变

张程宾, 于程, 刘向东, 金瓯, 陈永平

Steady deformation characteristics of double emulsion droplet in shear flow

Zhang Cheng-Bin, Yu Cheng, Liu Xiang-Dong, Jin Ou, Chen Yong-Ping
PDF
导出引用
  • 建立了不可压缩双重乳液界面行为的理论模型,并可视化实验验证了所建立模型的正确性.基于所建立的理论模型,数值模拟研究了剪切流场中双重乳液的形变机理,探讨了内外液滴半径比及各相工质黏度对其形变特性的影响规律.研究结果表明:在剪切流场中,双重乳液的稳态形变程度随着毛细数的增大而加剧,且内液滴抗形变能力比外液滴更强;随着内外液滴半径比的增大,双重乳液内外液滴间相互作用增强,导致内液滴形变程度增大,同时内液滴抗形变效应逐渐凸显,造成外液滴形变程度减小;双重乳液自身黏性是液滴形变的一种阻力,随着内、外液滴黏度的升高,双重乳液整体形变程度均减小,并且乳液外液滴相黏度变化对双重乳液稳态形变程度的影响更为明显.
    The manipulation of double emulsion droplet via shear flow field is widely encountered in microfluidic devices. However, the interface evolution and hydrodynamics behavior of double emulsion droplet in shear flow is less understood till now. In this paper, a theoretical model of double emulsion droplet in a Couette flow device is developed and numerically analyzed to characterize the interface behavior of incompressible double emulsion droplet, which is also verified by a visualization experiment. Based on this model, the mechanisms underlying the steady deformation of double emulsion droplet under shear are investigated, and the effects of radius ratio of inner droplet to the outer one and viscosities of working fluids on the steady deformation are discussed. The results indicate that the steady deformation of double emulsion droplet in the shear increases with the rise in capillary number, and the deformation resistance of inner droplet is larger than that of the outer droplet. With increasing the radius ratio of inner droplet to the outer one, the interaction between the inner and outer droplets becomes great and thus the deformation degree of the inner droplet is increased. In addition, the effect of big deformation resistance by the inner droplet tends to be obvious, leading to decreasing the deformation degree of outer droplet. The viscosities of both inner and outer droplets provide a resistance for the deformation of double emulsion droplet. With the rises in viscosities of inner and outer droplets, the deformation degree of integral double emulsion droplet decreases. In addition, the effect of outer droplet viscosity on the steady deformation is more obvious than that of the inner droplet.
      通信作者: 陈永平, ypchen@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51306033)和江苏省自然科学基金(批准号:BK20130621,BK20140488)资助的课题.
      Corresponding author: Chen Yong-Ping, ypchen@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51306033) and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130621, BK20140488).
    [1]

    Lee D, Weitz D A 2008 Adv. Mater. 20 3498

    [2]

    Shum H C, Zhao Y J, Kim S H, Weitz D A 2011 Angew. Chem. Int. Ed. 123 1686

    [3]

    Zhao Y J, Zhao X W, Hu J, Xu M, Zhao W J, Sun L G, Zhu C, Xu H, Gu Z Z 2009 Adv. Mater. 21 569

    [4]

    Bychkov V, Modestov M, Law C K 2015 Prog. Energy Combust. Sci. 47 32

    [5]

    Moreau L, Levassort C, Blondel B, de Nonancourt C, Croix C, Thibonnet J, Balland-Longeau A 2009 Laser Part. Beams 27 537

    [6]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 Acta Phys. Sin. 64 216801 (in Chinese)[徐威, 兰忠, 彭本利, 温荣福, 马学虎2015物理学报64 216801]

    [7]

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702 (in Chinese)[黄虎, 洪宁, 梁宏, 施保昌, 柴振华2016物理学报65 084702]

    [8]

    Mei M F, Yu B M, Luo L, Cai J C 2010 Chin. Phys. Lett. 27 076862

    [9]

    Stone H A 1994 Annu. Rev. Fluid Mech. 26 65

    [10]

    Renardy Y 2008 Int. J. Multiphase Flow 34 1185

    [11]

    Guido S 2011 Curr. Opin. Colloid Interface Sci. 16 61

    [12]

    Sibillo V, Pasquariello G, Simeone M, Cristini V, Guido S 2006 Phys. Rev. Lett. 97 054502

    [13]

    Smith K A, Ottino J M, de la Cruz M O 2004 Phys. Rev. Lett. 93 204501

    [14]

    Hua H, Shin J, Kim J 2014 Int. J. Heat Fluid Flow 50 63

    [15]

    Patlazhan S, Vagner S, Kravchenko I 2015 Phys. Rev. E 91 063002

    [16]

    Wang J T, Liu J X, Han J J, Guan J 2013 Phys. Rev. Lett. 110 066001

    [17]

    Gao P, James J F 2011 J. Fluid Mech. 682 415

    [18]

    Brackbill J U, Kothe D B, Zemach C A 1992 J. Comput. Phys. 100 335

    [19]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 46 201

    [20]

    Renardy Y, Cristini V 2001 Phys. Fluids 13 2161

    [21]

    Taylor G I 1934 Proceedings of the Royal Society of London Series A 146 501

    [22]

    Chen Y P, Wu L Y, Zhang L 2015 Int. J. Heat Mass Transfer 82 42

    [23]

    Stone H A, Leal L G 1990 J. Fluid Mech. 211 123

  • [1]

    Lee D, Weitz D A 2008 Adv. Mater. 20 3498

    [2]

    Shum H C, Zhao Y J, Kim S H, Weitz D A 2011 Angew. Chem. Int. Ed. 123 1686

    [3]

    Zhao Y J, Zhao X W, Hu J, Xu M, Zhao W J, Sun L G, Zhu C, Xu H, Gu Z Z 2009 Adv. Mater. 21 569

    [4]

    Bychkov V, Modestov M, Law C K 2015 Prog. Energy Combust. Sci. 47 32

    [5]

    Moreau L, Levassort C, Blondel B, de Nonancourt C, Croix C, Thibonnet J, Balland-Longeau A 2009 Laser Part. Beams 27 537

    [6]

    Xu W, Lan Z, Peng B L, Wen R F, Ma X H 2015 Acta Phys. Sin. 64 216801 (in Chinese)[徐威, 兰忠, 彭本利, 温荣福, 马学虎2015物理学报64 216801]

    [7]

    Huang H, Hong N, Liang H, Shi B C, Chai Z H 2016 Acta Phys. Sin. 65 084702 (in Chinese)[黄虎, 洪宁, 梁宏, 施保昌, 柴振华2016物理学报65 084702]

    [8]

    Mei M F, Yu B M, Luo L, Cai J C 2010 Chin. Phys. Lett. 27 076862

    [9]

    Stone H A 1994 Annu. Rev. Fluid Mech. 26 65

    [10]

    Renardy Y 2008 Int. J. Multiphase Flow 34 1185

    [11]

    Guido S 2011 Curr. Opin. Colloid Interface Sci. 16 61

    [12]

    Sibillo V, Pasquariello G, Simeone M, Cristini V, Guido S 2006 Phys. Rev. Lett. 97 054502

    [13]

    Smith K A, Ottino J M, de la Cruz M O 2004 Phys. Rev. Lett. 93 204501

    [14]

    Hua H, Shin J, Kim J 2014 Int. J. Heat Fluid Flow 50 63

    [15]

    Patlazhan S, Vagner S, Kravchenko I 2015 Phys. Rev. E 91 063002

    [16]

    Wang J T, Liu J X, Han J J, Guan J 2013 Phys. Rev. Lett. 110 066001

    [17]

    Gao P, James J F 2011 J. Fluid Mech. 682 415

    [18]

    Brackbill J U, Kothe D B, Zemach C A 1992 J. Comput. Phys. 100 335

    [19]

    Hirt C W, Nichols B D 1981 J. Comput. Phys. 46 201

    [20]

    Renardy Y, Cristini V 2001 Phys. Fluids 13 2161

    [21]

    Taylor G I 1934 Proceedings of the Royal Society of London Series A 146 501

    [22]

    Chen Y P, Wu L Y, Zhang L 2015 Int. J. Heat Mass Transfer 82 42

    [23]

    Stone H A, Leal L G 1990 J. Fluid Mech. 211 123

计量
  • 文章访问数:  2182
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-18
  • 修回日期:  2016-08-09
  • 刊出日期:  2016-10-05

剪切流场中双重乳液稳态形变

  • 1. 东南大学能源与环境学院, 南京 210096;
  • 2. 扬州大学水利与能源动力工程学院, 扬州 225127
  • 通信作者: 陈永平, ypchen@seu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51306033)和江苏省自然科学基金(批准号:BK20130621,BK20140488)资助的课题.

摘要: 建立了不可压缩双重乳液界面行为的理论模型,并可视化实验验证了所建立模型的正确性.基于所建立的理论模型,数值模拟研究了剪切流场中双重乳液的形变机理,探讨了内外液滴半径比及各相工质黏度对其形变特性的影响规律.研究结果表明:在剪切流场中,双重乳液的稳态形变程度随着毛细数的增大而加剧,且内液滴抗形变能力比外液滴更强;随着内外液滴半径比的增大,双重乳液内外液滴间相互作用增强,导致内液滴形变程度增大,同时内液滴抗形变效应逐渐凸显,造成外液滴形变程度减小;双重乳液自身黏性是液滴形变的一种阻力,随着内、外液滴黏度的升高,双重乳液整体形变程度均减小,并且乳液外液滴相黏度变化对双重乳液稳态形变程度的影响更为明显.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回