搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

入流激励下可压缩剪切层中Kelvin-Helmholtz涡的响应特性

张冬冬 谭建国 姚霄

引用本文:
Citation:

入流激励下可压缩剪切层中Kelvin-Helmholtz涡的响应特性

张冬冬, 谭建国, 姚霄

Response characteristics of inflow-stimulated Kelvin-Helmholtz vortex in compressible shear layer

Zhang Dong-Dong, Tan Jian-Guo, Yao Xiao
PDF
HTML
导出引用
  • 通过直接数值求解Navier-Stokes方程, 研究了入流激励下可压缩剪切层中Kelvin-Helmholtz (KH)涡结构的响应特性, 结果清晰地展示了KH涡的独特演化方式. 基于流动可视化数据, 采用两点相关性分析获得了流场拟序结构的空间尺寸和结构角分布. 通过分析不同激励频率下涡结构的动态特性, 揭示了入流激励下可压缩剪切层中KH涡结构的独特演化机理. 研究结果表明, 低频入流激励(f = 5 kHz)下KH涡尺寸在远场区域达到饱和后呈现锁频状态, KH涡量厚度稳定在12—14 mm之间; 与自由剪切层涡结构通过配对合并的方式实现生长的机理不同, 低频入流激励下剪切层的发展是通过中间涡核顺时针吞噬KH不稳定波诱导的一串外围小涡结构来实现生长. 此外, 针对高频激励 (f = 20 kHz)下的剪切层流动, 研究了涡结构特性和入流激励参数之间的定量关系, 发现均匀分布涡结构的尺寸近似等于对流速度与入流激励频率之比.
    By numerically solving the Navier-Stokes equations, the response characteristics of inflow-stimulated Kelvin-Helmholtz vortex in compressible shear layer arestudied. The mixing characteristics and the unique growth mechanism of the vortex structure are clearly revealed. By employing the index of vorticity thickness, the mixing properties are quantitatively analyzed. Based on the flow visualization results, the spatial size and the structure angle of the flow coherent structure are investigated by utilizing spatial correlation analysis. The evolution mechanism of the vortex structure in supersonic mixing layer induced by inlet forcing is revealed by analyzing the dynamical performances of the flow structure under different frequency disturbances. The numerical results show that with low forcing frequency at f = 5 kHz, the mixing efficiency is remarkably increased in the near-field of the flow. Whereas, in the far-field downstream the flow, the size of the structure reaches saturation state and the vortex passage frequency is locked, which causes the vorticity thickness to stabilize from 12mm to 14mm. Meanwhile, in a free mixing layer, the pairing and merging process occur in the flow field to promote the growth of the vortex structure, while in mixing layer with inlet forcing, the growth mechanism is that the vortex core engulfs a string of vortices induced by Kelvin-Helmholtz instability. The process of engulfment contributes much to the growth of the vortex structure. The analysis of spatial correlation distribution shows that in the area where engulfment occurs, the contour line shows the property of long and narrow ellipse instead of full ellipse and the structure in the area possesses the characteristics of intense rotation and inclination. Besides, with high inlet forcing frequency at f = 20 kHz, the size of the vortices becomes full in the near-field, and the vorticity thickness stabilizes between 3mm and 4 mm downstream the flow field. Meanwhile, the size of the vortex in controlled supersonic mixing layer is dominated by the imposed high-frequency forcing. An equation describing the quantitative relationship between the vortex characteristics and the imposed forcing frequency is derived, that is, the size of the uniform distribution vortex is approximately equal to the ratio of the value of convective velocity to inlet forcing frequency.
      通信作者: 谭建国, jianguotan@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11272351, 91441121)和湖南省研究生科研创新项目(批准号: CX2016B001)资助的课题
      Corresponding author: Tan Jian-Guo, jianguotan@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272351, 91441121) and the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2016 B001)
    [1]

    Curran E T 2001 J. Propul. Power 17 1138Google Scholar

    [2]

    Jumper E J, Fitzgerald E J 2001 Prog. Aerosp. Sci. 37 299Google Scholar

    [3]

    张冬冬, 谭建国, 李浩, 侯聚微 2017 物理学报 66 104702Google Scholar

    Zhang D D, Tan J G, Li H, Hou J W 2017 Acta Phys. Sin. 66 104702Google Scholar

    [4]

    Seiner J M, Dash S M, Kenzakowski D C 2001 J. Propul. Power 17 1273Google Scholar

    [5]

    Mason J O, Aguirre R C, Catrakis H J 2005 Inter. Assoc. Mech. Eng. Trans. 42 1973

    [6]

    Brown G L, Roshko A 1974 J. Fluid Mech. 64 775Google Scholar

    [7]

    Ortwerth P J, Shine A 1977 Tech. Rep. TR-77-118

    [8]

    Papamoschou D, Roshko A 1988 J. Fluid Mech. 197 453Google Scholar

    [9]

    Ho C M, Huang L S 1982 J. Fluid Mech. 119 443Google Scholar

    [10]

    McLaughlin D K, Martens S, Kinzie K W 1992 AIAA Paper 92−0177

    [11]

    郭广明, 刘洪, 张斌, 张庆兵 2017 物理学报 66 084701Google Scholar

    Guo G M, Liu H, Zhang B, Zhang Q B 2017 Acta Phys. Sin. 66 084701Google Scholar

    [12]

    Freeman A P, Catrakis H J 2008 AIAA J. 46 2582Google Scholar

    [13]

    Yu K H, Gutmark E J, Smith R A 1994 AIAA Paper 94-0185

    [14]

    冯军红 2016 博士学位论文 (长沙: 国防科技大学)

    Feng J H 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [15]

    Zhang D D, Tan J G, Yao X 2019 Phys. Fluids 31 036102Google Scholar

    [16]

    Zhang D D, Tan J G, Lv L, Li F 2019 Acta Astronaut. 156 33Google Scholar

    [17]

    Jiang G S, Shu C W 1996 J. Comput. Phys. 126 202Google Scholar

    [18]

    Lele S 1989 AIAA Paper 89−0374

    [19]

    Ren Z X, Wang B, Zheng L X 2018 Phys. Fluids 30 036101Google Scholar

    [20]

    Goebel S G, Dutton J C 1991 AIAA J. 29 538Google Scholar

    [21]

    Grimshaw R 1984 Annu. Rev. Fluid Mech. 16 11Google Scholar

    [22]

    Olsen M G, Dutton J C 2003 J. Fluid Mech. 486 51Google Scholar

    [23]

    Zhang D D, Tan J G, Lv L 2015 Acta Astronaut. 117 440Google Scholar

    [24]

    Zhang D D, Tan J G, Li H 2017 Appl. Phys. Lett. 111 114103Google Scholar

    [25]

    Ghoniem A F, Ng K K 1987 Phys. Fluids 30 706Google Scholar

    [26]

    Bourdon C J, Dutton J C 1999 Phys. Fluids 11 201Google Scholar

    [27]

    武宇, 易仕和, 何霖, 全鹏程, 朱杨柱 2015 物理学报 64 014703Google Scholar

    Wu Y, Yi S H, He L, Quan P C, Zhu Y Z 2015 Acta Phys. Sin. 64 014703Google Scholar

  • 图 1  计算模型示意图

    Fig. 1.  Schematic of computational model.

    图 2  数值与实验对比 (a) 时均速度; (b) 流向湍流强度

    Fig. 2.  Comparison between numerical and experimental results: (a) Mean velocity; (b) turbulent intensity.

    图 3  不同网格条件下混合层的涡量厚度沿流向的变化

    Fig. 3.  Vorticity thickness variations versus stream wise direction for different mesh distributions.

    图 4  连续控制信号分布

    Fig. 4.  Distribution of input continuous signal.

    图 5  自由剪切层流场涡结构分布

    Fig. 5.  Distribution of vortex structures of free shear layers.

    图 6  高频入流激励下流场涡结构的分布 (f = 20 kHz)

    Fig. 6.  Vortex structures distribution under inlet forcing with high frequency (f = 20 kHz).

    图 7  流场涡核之间的压力分布

    Fig. 7.  Pressure distribution between the vortex core in the flow field.

    图 8  高频入流激励下频谱分布 (f = 20 kHz) (a) X/H = 1; (b) X/H = 4

    Fig. 8.  Frequency spectrum distribution under inlet forcing with high frequency (f = 20 kHz): (a) X/H = 1; (b) X/H = 4

    图 9  低频入流扰动下剪切层流场涡结构分布 (f = 5 kHz)

    Fig. 9.  Vortex structures distribution under inlet forcing with low frequency (f = 5 kHz).

    图 10  低频入流激励下频谱分布 (f = 5 kHz) (a) X/H = 1; (b) X/H = 4

    Fig. 10.  Frequency spectrum distribution under inlet forcing with low frequency (f = 5 kHz): (a) X/H = 1; (b) X/H = 4

    图 11  涡结构的动态吞噬过程

    Fig. 11.  Dynamic engulfment process of vortex structures.

    图 12  剪切层涡量厚度随流向距离的分布

    Fig. 12.  Vorticity thickness distribution versus streamwise direction.

    图 13  自由剪切层中不同流向位置处空间相关性分布 (a) (1.5, 0.6); (b) (2.4, 0.6); (c) (3.5, 0.6); (d) (5.1, 0.6)

    Fig. 13.  Spatial correlation distributions of free shear layers in different streamwise positions: (a) (1.5, 0.6); (b) (2.4, 0.6); (c) (3.5, 0.6); (d) (5.1, 0.6).

    图 14  低频激励下不同流向位置处空间相关性分布 (a) (2.0, 0.6); (b) (2.7, 0.6); (c) (3.5, 0.6); (d) (5.1, 0.6)

    Fig. 14.  Spatial correlation distributions with low frequency forcing in different streamwise positions: (a) (2.0, 0.6); (b) (2.7, 0.6); (c) (3.5, 0.6); (d) (5.1, 0.6).

    图 15  拟序结构的大小和结构角示意图

    Fig. 15.  Schematic of vortex size and structure angle.

    图 16  无量纲结构大小沿流向的分布

    Fig. 16.  Non-dimensional structure size distribution versus streamwise direction.

    图 17  结构角沿流向的分布

    Fig. 17.  Structure angle distribution versus streamwise direction.

    表 1  数值计算来流参数

    Table 1.  Inflow parameters of numerical simulation

    速度
    /m·s–1
    马赫
    密度
    /kg·m–3
    压力
    /kPa
    温度
    /K
    对流马
    赫数Mc
    上层
    来流
    4732.150.983341200.4
    下层
    来流
    2841.120.73734160
    下载: 导出CSV

    表 2  Goebel-Dutton超声速混合层实验来流参数

    Table 2.  Inflow parameters of supersonic mixing layer experiments conducted by Goebel and Dutton.

    速度
    /m·s–1
    马赫
    密度
    /kg·m–3
    压力
    /kPa
    对流马
    赫数Mc
    上层
    来流
    5192.041.00460.2
    下层
    来流
    4091.400.7646
    下载: 导出CSV
  • [1]

    Curran E T 2001 J. Propul. Power 17 1138Google Scholar

    [2]

    Jumper E J, Fitzgerald E J 2001 Prog. Aerosp. Sci. 37 299Google Scholar

    [3]

    张冬冬, 谭建国, 李浩, 侯聚微 2017 物理学报 66 104702Google Scholar

    Zhang D D, Tan J G, Li H, Hou J W 2017 Acta Phys. Sin. 66 104702Google Scholar

    [4]

    Seiner J M, Dash S M, Kenzakowski D C 2001 J. Propul. Power 17 1273Google Scholar

    [5]

    Mason J O, Aguirre R C, Catrakis H J 2005 Inter. Assoc. Mech. Eng. Trans. 42 1973

    [6]

    Brown G L, Roshko A 1974 J. Fluid Mech. 64 775Google Scholar

    [7]

    Ortwerth P J, Shine A 1977 Tech. Rep. TR-77-118

    [8]

    Papamoschou D, Roshko A 1988 J. Fluid Mech. 197 453Google Scholar

    [9]

    Ho C M, Huang L S 1982 J. Fluid Mech. 119 443Google Scholar

    [10]

    McLaughlin D K, Martens S, Kinzie K W 1992 AIAA Paper 92−0177

    [11]

    郭广明, 刘洪, 张斌, 张庆兵 2017 物理学报 66 084701Google Scholar

    Guo G M, Liu H, Zhang B, Zhang Q B 2017 Acta Phys. Sin. 66 084701Google Scholar

    [12]

    Freeman A P, Catrakis H J 2008 AIAA J. 46 2582Google Scholar

    [13]

    Yu K H, Gutmark E J, Smith R A 1994 AIAA Paper 94-0185

    [14]

    冯军红 2016 博士学位论文 (长沙: 国防科技大学)

    Feng J H 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [15]

    Zhang D D, Tan J G, Yao X 2019 Phys. Fluids 31 036102Google Scholar

    [16]

    Zhang D D, Tan J G, Lv L, Li F 2019 Acta Astronaut. 156 33Google Scholar

    [17]

    Jiang G S, Shu C W 1996 J. Comput. Phys. 126 202Google Scholar

    [18]

    Lele S 1989 AIAA Paper 89−0374

    [19]

    Ren Z X, Wang B, Zheng L X 2018 Phys. Fluids 30 036101Google Scholar

    [20]

    Goebel S G, Dutton J C 1991 AIAA J. 29 538Google Scholar

    [21]

    Grimshaw R 1984 Annu. Rev. Fluid Mech. 16 11Google Scholar

    [22]

    Olsen M G, Dutton J C 2003 J. Fluid Mech. 486 51Google Scholar

    [23]

    Zhang D D, Tan J G, Lv L 2015 Acta Astronaut. 117 440Google Scholar

    [24]

    Zhang D D, Tan J G, Li H 2017 Appl. Phys. Lett. 111 114103Google Scholar

    [25]

    Ghoniem A F, Ng K K 1987 Phys. Fluids 30 706Google Scholar

    [26]

    Bourdon C J, Dutton J C 1999 Phys. Fluids 11 201Google Scholar

    [27]

    武宇, 易仕和, 何霖, 全鹏程, 朱杨柱 2015 物理学报 64 014703Google Scholar

    Wu Y, Yi S H, He L, Quan P C, Zhu Y Z 2015 Acta Phys. Sin. 64 014703Google Scholar

  • [1] 曹义刚, 付萌萌, 杨喜昶, 李登峰, 王晓霞. 热传导对横截面不同的直管道中Kelvin-Helmholtz不稳定性的影响. 物理学报, 2022, 71(9): 094701. doi: 10.7498/aps.71.20211155
    [2] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性. 物理学报, 2022, 71(1): 014301. doi: 10.7498/aps.71.20211266
    [3] 石启陈, 赵志杰, 张焕好, 陈志华, 郑纯. 流向磁场抑制Kelvin-Helmholtz不稳定性机理研究. 物理学报, 2021, 70(15): 154702. doi: 10.7498/aps.70.20202024
    [4] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211266
    [5] 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性. 物理学报, 2020, 69(21): 214401. doi: 10.7498/aps.69.20201000
    [6] 孙伟, 安维明, 仲佳勇. 磁场对激光驱动Kelvin-Helmholtz不稳定性影响的二维数值研究. 物理学报, 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [7] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究. 物理学报, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [8] 郭广明, 刘洪, 张斌, 张庆兵. 脉冲激励下超音速混合层涡结构的演化机理. 物理学报, 2017, 66(8): 084701. doi: 10.7498/aps.66.084701
    [9] 毕海亮, 魏来, 范冬梅, 郑殊, 王正汹. 旋转圆柱等离子体中撕裂模和Kelvin-Helmholtz不稳定性的激发特性. 物理学报, 2016, 65(22): 225201. doi: 10.7498/aps.65.225201
    [10] 甘才俊, 李烺, 马汉东, 熊红亮. 可压缩混合层光学传输效应理论分析与实验研究. 物理学报, 2014, 63(5): 054703. doi: 10.7498/aps.63.054703
    [11] 金叶青, 姚熊亮, 庞福振, 张阿漫. 均匀流中剪切变形加筋层合板声与振动特性研究. 物理学报, 2013, 62(13): 134306. doi: 10.7498/aps.62.134306
    [12] 姚熊亮, 叶曦, 张阿漫. 行波驱动下空泡在可压缩流场中的运动特性研究. 物理学报, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [13] 叶曦, 姚熊亮, 张阿漫, 庞福振. 可压缩涡流场中空泡运动规律及声辐射特性研究. 物理学报, 2013, 62(11): 114702. doi: 10.7498/aps.62.114702
    [14] 王立锋, 滕爱萍, 叶文华, 范征锋, 陶烨晟, 林传栋, 李英骏. 超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究. 物理学报, 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
    [15] 王立锋, 叶文华, 范征锋, 李英骏. 二维不可压流体Kelvin-Helmholtz不稳定性的弱非线性研究. 物理学报, 2009, 58(7): 4787-4792. doi: 10.7498/aps.58.4787
    [16] 王立锋, 叶文华, 范征锋, 孙彦乾, 郑炳松, 李英骏. 二维可压缩流体Kelvin-Helmholtz不稳定性. 物理学报, 2009, 58(9): 6381-6386. doi: 10.7498/aps.58.6381
    [17] 王立锋, 叶文华, 李英骏. 二维不可压缩流体Kelvin-Helmholtz不稳定性的二次谐波产生. 物理学报, 2008, 57(5): 3038-3043. doi: 10.7498/aps.57.3038
    [18] 姜雪宁, 王 昊, 马小叶, 孟宪芹, 张庆瑜. 蓝宝石衬底上Gd2O3掺杂CeO2氧离子导体电解质薄膜的生长及电学性能. 物理学报, 2008, 57(3): 1851-1856. doi: 10.7498/aps.57.1851
    [19] 俞慧丹, 赵凯华. 模拟可压缩流体的格子Boltzmann模型. 物理学报, 1999, 48(8): 1470-1476. doi: 10.7498/aps.48.1470
    [20] 卢鹤绂. 可压缩流体之散逸函数. 物理学报, 1951, 8(2): 143-149. doi: 10.7498/aps.8.143
计量
  • 文章访问数:  8932
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-06
  • 修回日期:  2019-10-30
  • 刊出日期:  2020-01-20

/

返回文章
返回